Namespaces
Variants
Actions

Difference between revisions of "Singular integral"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
s0855701.png
 +
$#A+1 = 33 n = 0
 +
$#C+1 = 33 : ~/encyclopedia/old_files/data/S085/S.0805570 Singular integral
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
An integral
 
An integral
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s0855701.png" /></td> </tr></table>
+
$$
 +
I _ {n} ( f, x)  = \int\limits _ { a } ^ { b }  f ( t) \Phi _ {n} ( t, x)  dt
 +
$$
  
with a singularity at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s0855702.png" />, defined for a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s0855703.png" /> integrable on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s0855704.png" />, whose kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s0855705.png" /> satisfies the following conditions: For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s0855706.png" /> and an arbitrary interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s0855707.png" />,
+
with a singularity at the point $  x $,  
 +
defined for a function $  f $
 +
integrable on $  [ a, b] $,  
 +
whose kernel $  \Phi _ {n} $
 +
satisfies the following conditions: For any $  \delta > 0 $
 +
and an arbitrary interval $  [ \alpha , \beta ] \subset  [ a, b] $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s0855708.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
\lim\limits _ {n \rightarrow \infty } \
 +
\int\limits _ {[ a, b] \cap [ x - \delta , x + \delta ] }
 +
\Phi _ {n} ( t, x)  dt  = 1,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s0855709.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
\lim\limits _ {n \rightarrow \infty }  \int\limits _ {[ \alpha , \beta ] - [ x -
 +
\delta , x + \delta ] } \Phi _ {n} ( t, x) dt  =  0
 +
$$
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s08557010.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3 }
 +
{ \mathop{\rm ess}  \sup }
 +
_ {t \in [ a, x - \delta ] \cup [ x + \delta , b] } \
 +
| \Phi _ {n} ( t, x) |  \leq  \
 +
\Phi _ {x} ( \delta ) < \infty ,
 +
$$
 +
 
 +
where  $  \Phi _ {x} ( \delta ) $
 +
depends only on  $  \delta $
 +
and  $  x $
 +
and not on  $  n $.  
 +
If (1), (2) and (3) are fulfilled uniformly on an  $  x $-
 +
set  $  E \subset  [ a, b] $,
 +
then the integral  $  I _ {n} ( f, x) $
 +
is said to be uniformly singular on  $  E $.  
 +
Most attention has been paid to properties of so-called positive kernels  $  ( \Phi _ {n} ( t, x) \geq  0) $;  
 +
Dirichlet kernels (cf. [[Dirichlet kernel|Dirichlet kernel]])
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s08557011.png" /> depends only on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s08557012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s08557013.png" /> and not on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s08557014.png" />. If (1), (2) and (3) are fulfilled uniformly on an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s08557015.png" />-set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s08557016.png" />, then the integral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s08557017.png" /> is said to be uniformly singular on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s08557018.png" />. Most attention has been paid to properties of so-called positive kernels <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s08557019.png" />; Dirichlet kernels (cf. [[Dirichlet kernel|Dirichlet kernel]])
+
$$
 +
D _ {n} ( t, x) = \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s08557020.png" /></td> </tr></table>
+
\frac{\sin  {
 +
\frac{2n + 1 }{2}
 +
} ( t - x) }{2  \sin  {
 +
\frac{t - x }{2}
 +
} }
 +
,
 +
$$
  
 
Fejér kernels (cf. [[Fejér singular integral|Fejér integral]])
 
Fejér kernels (cf. [[Fejér singular integral|Fejér integral]])
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s08557021.png" /></td> </tr></table>
+
$$
 +
F _ {n} ( t, x)  = \
 +
 
 +
\frac{\sin  ^ {2}  {
 +
\frac{n + 1 }{2}
 +
} ( t - x) }{2 ( n + 1)  \sin  ^ {2}  {
 +
\frac{t - x }{2}
 +
} }
 +
,
 +
$$
  
 
Poisson–Abel kernels (cf. [[Poisson integral|Poisson integral]])
 
Poisson–Abel kernels (cf. [[Poisson integral|Poisson integral]])
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s08557022.png" /></td> </tr></table>
+
$$
 +
P _ {r} ( t, x)  = \
 +
 
 +
\frac{1 - r  ^ {2} }{2 [ 1 - 2r  \cos  ( t - x) + r  ^ {2} ] }
 +
,\ \
 +
0 \leq  r < 1,
 +
$$
  
 
and kernels induced by various methods of summation of orthogonal expansions in orthonormal polynomials.
 
and kernels induced by various methods of summation of orthogonal expansions in orthonormal polynomials.
Line 29: Line 93:
 
The concept of a  "singular integral"  was introduced by H. Lebesgue [[#References|[1]]], who pointed out its importance in the investigation of questions of convergence. Thus, the investigation of the convergence of singular integrals bears on questions of convergence and summability of trigonometric [[Fourier series|Fourier series]]; [[Fourier series in orthogonal polynomials|Fourier series in orthogonal polynomials]], and also expansions in general orthogonal systems.
 
The concept of a  "singular integral"  was introduced by H. Lebesgue [[#References|[1]]], who pointed out its importance in the investigation of questions of convergence. Thus, the investigation of the convergence of singular integrals bears on questions of convergence and summability of trigonometric [[Fourier series|Fourier series]]; [[Fourier series in orthogonal polynomials|Fourier series in orthogonal polynomials]], and also expansions in general orthogonal systems.
  
Lebesgue established a criterion for the convergence of singular integrals in the case of continuous functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s08557023.png" /> of bounded variation. D.K. Faddeev [[#References|[2]]] established necessary and sufficient conditions for the convergence of singular integrals at a [[Lebesgue point|Lebesgue point]] in the case of summable functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s08557024.png" />. Since the conditions of Lebesgue and Faddeev are difficult to verify for concrete singular integrals, a whole series of papers was devoted to the search for effective sufficient conditions for the convergence of singular integrals, both at isolated points and uniformly. For a singular integral to converge at a continuity point, it is sufficient that the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s08557025.png" /> is bounded in norm, i.e. the sequence of integrals
+
Lebesgue established a criterion for the convergence of singular integrals in the case of continuous functions $  f $
 +
of bounded variation. D.K. Faddeev [[#References|[2]]] established necessary and sufficient conditions for the convergence of singular integrals at a [[Lebesgue point|Lebesgue point]] in the case of summable functions $  f $.  
 +
Since the conditions of Lebesgue and Faddeev are difficult to verify for concrete singular integrals, a whole series of papers was devoted to the search for effective sufficient conditions for the convergence of singular integrals, both at isolated points and uniformly. For a singular integral to converge at a continuity point, it is sufficient that the operator $  I _ {n} ( f, x) $
 +
is bounded in norm, i.e. the sequence of integrals
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s08557026.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { a } ^ { b }  | \Phi _ {n} ( t, x) |  dt ,\  n= 1, 2 \dots
 +
$$
  
must be bounded, and for convergence at a Lebesgue point it is necessary that there exists a so-called  "hump-backed majoranthump-backed majorant"  for the kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s08557027.png" />, that is, an integrable function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s08557028.png" /> which monotonically increases on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s08557029.png" /> and monotonically decreases on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s08557030.png" />, such that for almost-all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s08557031.png" />,
+
must be bounded, and for convergence at a Lebesgue point it is necessary that there exists a so-called  "hump-backed majoranthump-backed majorant"  for the kernel $  \Phi _ {n} ( t, x) $,  
 +
that is, an integrable function $  \Psi _ {n} ( t, x) \geq  0 $
 +
which monotonically increases on $  [ a, x) $
 +
and monotonically decreases on $  ( x, b) $,  
 +
such that for almost-all $  t \in [ a, b] $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s08557032.png" /></td> </tr></table>
+
$$
 +
| \Phi _ {n} ( t, x) |  \leq  \Psi _ {n} ( t, x),
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085570/s08557033.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { a } ^ { b }  \Psi _ {n} ( t, x)  dt  = O ( 1).
 +
$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Lebesgue,  "Sur les intégrales singulières"  ''Ann. Fac. Sci. Univ. Toulouse'' , '''1'''  (1909)  pp. 25–117</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  D.K. Faddeev,  "On the representation of mean-square integrable functions by singular integrals"  ''Mat. Sb.'' , '''1'''  (1936)  pp. 351–368  (In Russian)  (French abstract)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  P.P. Korovkin,  "Linear operators and approximation theory" , Hindushtan Publ. Comp.  (1960)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  I.P. Natanson,  "Functions of a real variable" , '''1–2''' , F. Ungar  (1955–1961)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  G. Alexits,  "Convergence problems of orthogonal series" , Pergamon  (1961)  (Translated from Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  A.V. Efimov,  "On linear summation methods for Fourier series"  ''Izv. Akad. Nauk. SSSR Ser. Mat.'' , '''24''' :  5  (1960)  pp. 743–756  (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  S.A. Telyakovskii,  "Integrability conditions for trigonometric series and their application to the study of linear summation methods for Fourier series"  ''Izv. Akad. Nauk. SSSR Ser. Mat.'' , '''28''' :  6  (1964)  pp. 1209–1236  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Lebesgue,  "Sur les intégrales singulières"  ''Ann. Fac. Sci. Univ. Toulouse'' , '''1'''  (1909)  pp. 25–117</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  D.K. Faddeev,  "On the representation of mean-square integrable functions by singular integrals"  ''Mat. Sb.'' , '''1'''  (1936)  pp. 351–368  (In Russian)  (French abstract)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  P.P. Korovkin,  "Linear operators and approximation theory" , Hindushtan Publ. Comp.  (1960)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  I.P. Natanson,  "Functions of a real variable" , '''1–2''' , F. Ungar  (1955–1961)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  G. Alexits,  "Convergence problems of orthogonal series" , Pergamon  (1961)  (Translated from Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  A.V. Efimov,  "On linear summation methods for Fourier series"  ''Izv. Akad. Nauk. SSSR Ser. Mat.'' , '''24''' :  5  (1960)  pp. 743–756  (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  S.A. Telyakovskii,  "Integrability conditions for trigonometric series and their application to the study of linear summation methods for Fourier series"  ''Izv. Akad. Nauk. SSSR Ser. Mat.'' , '''28''' :  6  (1964)  pp. 1209–1236  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 08:14, 6 June 2020


An integral

$$ I _ {n} ( f, x) = \int\limits _ { a } ^ { b } f ( t) \Phi _ {n} ( t, x) dt $$

with a singularity at the point $ x $, defined for a function $ f $ integrable on $ [ a, b] $, whose kernel $ \Phi _ {n} $ satisfies the following conditions: For any $ \delta > 0 $ and an arbitrary interval $ [ \alpha , \beta ] \subset [ a, b] $,

$$ \tag{1 } \lim\limits _ {n \rightarrow \infty } \ \int\limits _ {[ a, b] \cap [ x - \delta , x + \delta ] } \Phi _ {n} ( t, x) dt = 1, $$

$$ \tag{2 } \lim\limits _ {n \rightarrow \infty } \int\limits _ {[ \alpha , \beta ] - [ x - \delta , x + \delta ] } \Phi _ {n} ( t, x) dt = 0 $$

and

$$ \tag{3 } { \mathop{\rm ess} \sup } _ {t \in [ a, x - \delta ] \cup [ x + \delta , b] } \ | \Phi _ {n} ( t, x) | \leq \ \Phi _ {x} ( \delta ) < \infty , $$

where $ \Phi _ {x} ( \delta ) $ depends only on $ \delta $ and $ x $ and not on $ n $. If (1), (2) and (3) are fulfilled uniformly on an $ x $- set $ E \subset [ a, b] $, then the integral $ I _ {n} ( f, x) $ is said to be uniformly singular on $ E $. Most attention has been paid to properties of so-called positive kernels $ ( \Phi _ {n} ( t, x) \geq 0) $; Dirichlet kernels (cf. Dirichlet kernel)

$$ D _ {n} ( t, x) = \ \frac{\sin { \frac{2n + 1 }{2} } ( t - x) }{2 \sin { \frac{t - x }{2} } } , $$

Fejér kernels (cf. Fejér integral)

$$ F _ {n} ( t, x) = \ \frac{\sin ^ {2} { \frac{n + 1 }{2} } ( t - x) }{2 ( n + 1) \sin ^ {2} { \frac{t - x }{2} } } , $$

Poisson–Abel kernels (cf. Poisson integral)

$$ P _ {r} ( t, x) = \ \frac{1 - r ^ {2} }{2 [ 1 - 2r \cos ( t - x) + r ^ {2} ] } ,\ \ 0 \leq r < 1, $$

and kernels induced by various methods of summation of orthogonal expansions in orthonormal polynomials.

The concept of a "singular integral" was introduced by H. Lebesgue [1], who pointed out its importance in the investigation of questions of convergence. Thus, the investigation of the convergence of singular integrals bears on questions of convergence and summability of trigonometric Fourier series; Fourier series in orthogonal polynomials, and also expansions in general orthogonal systems.

Lebesgue established a criterion for the convergence of singular integrals in the case of continuous functions $ f $ of bounded variation. D.K. Faddeev [2] established necessary and sufficient conditions for the convergence of singular integrals at a Lebesgue point in the case of summable functions $ f $. Since the conditions of Lebesgue and Faddeev are difficult to verify for concrete singular integrals, a whole series of papers was devoted to the search for effective sufficient conditions for the convergence of singular integrals, both at isolated points and uniformly. For a singular integral to converge at a continuity point, it is sufficient that the operator $ I _ {n} ( f, x) $ is bounded in norm, i.e. the sequence of integrals

$$ \int\limits _ { a } ^ { b } | \Phi _ {n} ( t, x) | dt ,\ n= 1, 2 \dots $$

must be bounded, and for convergence at a Lebesgue point it is necessary that there exists a so-called "hump-backed majoranthump-backed majorant" for the kernel $ \Phi _ {n} ( t, x) $, that is, an integrable function $ \Psi _ {n} ( t, x) \geq 0 $ which monotonically increases on $ [ a, x) $ and monotonically decreases on $ ( x, b) $, such that for almost-all $ t \in [ a, b] $,

$$ | \Phi _ {n} ( t, x) | \leq \Psi _ {n} ( t, x), $$

where

$$ \int\limits _ { a } ^ { b } \Psi _ {n} ( t, x) dt = O ( 1). $$

References

[1] H. Lebesgue, "Sur les intégrales singulières" Ann. Fac. Sci. Univ. Toulouse , 1 (1909) pp. 25–117
[2] D.K. Faddeev, "On the representation of mean-square integrable functions by singular integrals" Mat. Sb. , 1 (1936) pp. 351–368 (In Russian) (French abstract)
[3] P.P. Korovkin, "Linear operators and approximation theory" , Hindushtan Publ. Comp. (1960) (Translated from Russian)
[4] I.P. Natanson, "Functions of a real variable" , 1–2 , F. Ungar (1955–1961) (Translated from Russian)
[5] G. Alexits, "Convergence problems of orthogonal series" , Pergamon (1961) (Translated from Russian)
[6] A.V. Efimov, "On linear summation methods for Fourier series" Izv. Akad. Nauk. SSSR Ser. Mat. , 24 : 5 (1960) pp. 743–756 (In Russian)
[7] S.A. Telyakovskii, "Integrability conditions for trigonometric series and their application to the study of linear summation methods for Fourier series" Izv. Akad. Nauk. SSSR Ser. Mat. , 28 : 6 (1964) pp. 1209–1236 (In Russian)

Comments

A basic example of a singular integral is the Hilbert singular integral (cf. also Hilbert transform).

References

[a1] E.M. Stein, "Singular integrals and differentiability properties of functions" , Princeton Univ. Press (1979)
How to Cite This Entry:
Singular integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Singular_integral&oldid=18592
This article was adapted from an original article by A.V. Efimov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article