Difference between revisions of "Simplicial object in a category"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | s0853801.png | ||
| + | $#A+1 = 77 n = 0 | ||
| + | $#C+1 = 77 : ~/encyclopedia/old_files/data/S085/S.0805380 Simplicial object in a category | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | A contravariant functor | + | {{TEX|auto}} |
| + | {{TEX|done}} | ||
| + | |||
| + | '' $ {\mathcal C} $'' | ||
| + | |||
| + | A contravariant functor $ X: \Delta \rightarrow {\mathcal C} $( | ||
| + | or, equivalently, a covariant functor $ X: \Delta ^ {op} \rightarrow {\mathcal C} $) | ||
| + | from the category $ \Delta $, | ||
| + | whose objects are ordered sets $ [ n] = \{ 0 \dots n \} $, | ||
| + | $ n \geq 0 $, | ||
| + | and whose morphisms are non-decreasing mappings $ \mu : [ n] \rightarrow [ m] $, | ||
| + | into the category $ {\mathcal C} $. | ||
| + | A covariant functor $ X: \Delta \rightarrow {\mathcal C} $( | ||
| + | or, equivalently, a contravariant functor $ X: \Delta ^ {op} \rightarrow {\mathcal C} $) | ||
| + | is called a co-simplicial object in $ {\mathcal C} $. | ||
The morphisms | The morphisms | ||
| − | + | $$ | |
| + | \delta _ {i} = \delta _ {i} ^ {n} : [ n - 1] \rightarrow [ n],\ \ | ||
| + | 0 \leq i \leq n, | ||
| + | $$ | ||
| − | + | $$ | |
| + | \sigma _ {i} = \sigma _ {i} ^ {n} : [ n + 1] \rightarrow [ n],\ 0 \leq i \leq n, | ||
| + | $$ | ||
| − | of | + | of $ \Delta $ |
| + | given by | ||
| − | + | $$ | |
| + | \delta _ {i} ^ {n} ( j) = \ | ||
| + | \left \{ | ||
| − | + | $$ | |
| + | \sigma _ {i} ^ {n} ( j) = \left \{ | ||
| − | generate all the morphisms of | + | generate all the morphisms of $ \Delta $, |
| + | so that a simplicial object $ X $ | ||
| + | is determined by the objects $ X ([ n]) = X _ {n} $, | ||
| + | $ n \geq 0 $( | ||
| + | called the $ n $- | ||
| + | fibres or $ n $- | ||
| + | components of the simplicial object $ X $), | ||
| + | and the morphisms | ||
| − | + | $$ | |
| + | d _ {i} = X ( \delta _ {i} ): X _ {n} \rightarrow X _ {n - 1 } \ \ | ||
| + | \textrm{ and } \ \ | ||
| + | s _ {i} = X ( \sigma _ {i} ): X _ {n} \rightarrow X _ {n + 1 } | ||
| + | $$ | ||
| − | (called boundary operators and degeneracy operators, respectively). In case | + | (called boundary operators and degeneracy operators, respectively). In case $ {\mathcal C} $ |
| + | is a category of structured sets, the elements of $ X _ {n} $ | ||
| + | are usually called the $ n $- | ||
| + | dimensional simplices of $ X $. | ||
| + | The mappings $ \delta _ {i} $ | ||
| + | and $ \sigma _ {i} $ | ||
| + | satisfy the relations | ||
| − | + | $$ \tag{* } | |
| + | \left . | ||
| − | and any relation between these mappings is a consequence of the relations (*). This means that a simplicial object | + | and any relation between these mappings is a consequence of the relations (*). This means that a simplicial object $ X $ |
| + | can be identified with a system $ \{ X _ {n} , d _ {i} , s _ {i} \} $ | ||
| + | of objects $ X _ {n} $, | ||
| + | $ n \geq 0 $, | ||
| + | of $ {\mathcal C} $ | ||
| + | and morphisms $ d _ {i} : X _ {n} \rightarrow X _ {n - 1 } $ | ||
| + | and $ s _ {i} : X _ {n} \rightarrow X _ {n + 1 } $, | ||
| + | $ 0 \leq i \leq n $, | ||
| + | satisfying the relations | ||
| − | + | $$ | |
| + | d _ {i} d _ {j} = d _ {j - 1 } d _ {i} \ \textrm{ if } i < j; | ||
| + | $$ | ||
| − | + | $$ | |
| + | s _ {i} s _ {j} = s _ {j + 1 } s _ {i} \ \textrm{ if } i \leq j; | ||
| + | $$ | ||
| − | + | $$ | |
| + | d _ {i} s _ {j} = \left \{ | ||
| − | Similarly, a co-simplicial object | + | Similarly, a co-simplicial object $ X $ |
| + | can be identified with a system $ \{ X _ {n} , d ^ {i} , s ^ {i} \} $ | ||
| + | of objects $ X ^ {n} $, | ||
| + | $ n \geq 0 $( | ||
| + | $ n $- | ||
| + | co-fibres) and morphisms $ d _ {i} : X ^ {n - 1 } \rightarrow X ^ {n} $, | ||
| + | $ 0 \leq i \leq n $( | ||
| + | co-boundary operators), and $ s ^ {i} : X ^ {n + 1 } \rightarrow X ^ {n} $, | ||
| + | $ 0 \leq i \leq n $( | ||
| + | co-degeneracy operators), satisfying the relations (*) (with $ \delta _ {i} = d ^ {i} $, | ||
| + | $ \sigma _ {i} = s ^ {i} $). | ||
| − | A simplicial mapping | + | A simplicial mapping $ f: X \rightarrow Y $ |
| + | between simplicial objects (in the same category $ {\mathcal C} $) | ||
| + | is a transformation (morphism) of functors from $ X: \Delta \rightarrow {\mathcal C} $ | ||
| + | into $ Y: \Delta \rightarrow {\mathcal C} $, | ||
| + | that is, a family of morphisms $ f _ {n} : X _ {n} \rightarrow Y _ {n} $, | ||
| + | $ n \geq 0 $, | ||
| + | of $ {\mathcal C} $ | ||
| + | such that | ||
| − | + | $$ | |
| + | d _ {i} f _ {n + 1 } = f _ {n} d _ {i} ,\ \ | ||
| + | 0 \leq i \leq n + 1, | ||
| + | $$ | ||
| − | + | $$ | |
| + | s _ {i} f _ {n} = f _ {n + 1 } s _ {i} ,\ 0 \leq i \leq n. | ||
| + | $$ | ||
| − | The simplicial objects of | + | The simplicial objects of $ {\mathcal C} $ |
| + | and their simplicial mappings form a category, denoted by $ \Delta ^ {0} {\mathcal C} $. | ||
| − | A simplicial homotopy | + | A simplicial homotopy $ h: f \simeq g $ |
| + | between two simplicial mappings $ f, g: X \rightarrow Y $ | ||
| + | between simplicial objects in a category $ {\mathcal C} $ | ||
| + | is a family of morphisms $ h _ {i} : X _ {n} \rightarrow Y _ {n + 1 } $, | ||
| + | $ 0 \leq i \leq n $, | ||
| + | of $ {\mathcal C} $ | ||
| + | such that | ||
| − | + | $$ | |
| + | d _ {0} h _ {0} = f _ {n} ; | ||
| + | $$ | ||
| − | + | $$ | |
| + | d _ {n} h _ {n} = g _ {n} ; | ||
| + | $$ | ||
| − | + | $$ | |
| + | d _ {i} h _ {j} = \left \{ | ||
| − | + | $$ | |
| + | s _ {i} h _ {j} = \left \{ | ||
| − | On the basis of this definition one can reproduce in essence the whole of ordinary homotopy theory in the category | + | On the basis of this definition one can reproduce in essence the whole of ordinary homotopy theory in the category $ \Delta ^ {0} {\mathcal C} $, |
| + | for any category $ {\mathcal C} $. | ||
| + | In the case of the category of sets or topological spaces, the geometric realization functor (see [[Simplicial set|Simplicial set]]) carries this "simplicial" theory into the usual one. | ||
Examples of simplicial objects are a simplicial set, a simplicial topological space, a simplicial algebraic variety, a simplicial group, a simplicial Abelian group, a simplicial Lie algebra, a simplicial smooth manifold, etc. | Examples of simplicial objects are a simplicial set, a simplicial topological space, a simplicial algebraic variety, a simplicial group, a simplicial Abelian group, a simplicial Lie algebra, a simplicial smooth manifold, etc. | ||
| − | Every simplicial Abelian group can be made into a chain complex with boundary operator | + | Every simplicial Abelian group can be made into a chain complex with boundary operator $ d = \sum (- 1) ^ {i} d _ {i} $. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> P. Gabriel, M. Zisman, "Calculus of fractions and homotopy theory" , Springer (1967)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.P. May, "Simplicial objects in algebraic topology" , v. Nostrand (1967)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> K. Lamotke, "Semisimpliziale algebraische Topologie" , Springer (1968)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P. Gabriel, M. Zisman, "Calculus of fractions and homotopy theory" , Springer (1967)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.P. May, "Simplicial objects in algebraic topology" , v. Nostrand (1967)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> K. Lamotke, "Semisimpliziale algebraische Topologie" , Springer (1968)</TD></TR></table> | ||
Revision as of 08:14, 6 June 2020
$ {\mathcal C} $
A contravariant functor $ X: \Delta \rightarrow {\mathcal C} $( or, equivalently, a covariant functor $ X: \Delta ^ {op} \rightarrow {\mathcal C} $) from the category $ \Delta $, whose objects are ordered sets $ [ n] = \{ 0 \dots n \} $, $ n \geq 0 $, and whose morphisms are non-decreasing mappings $ \mu : [ n] \rightarrow [ m] $, into the category $ {\mathcal C} $. A covariant functor $ X: \Delta \rightarrow {\mathcal C} $( or, equivalently, a contravariant functor $ X: \Delta ^ {op} \rightarrow {\mathcal C} $) is called a co-simplicial object in $ {\mathcal C} $.
The morphisms
$$ \delta _ {i} = \delta _ {i} ^ {n} : [ n - 1] \rightarrow [ n],\ \ 0 \leq i \leq n, $$
$$ \sigma _ {i} = \sigma _ {i} ^ {n} : [ n + 1] \rightarrow [ n],\ 0 \leq i \leq n, $$
of $ \Delta $ given by
$$ \delta _ {i} ^ {n} ( j) = \ \left \{ $$ \sigma _ {i} ^ {n} ( j) = \left \{
generate all the morphisms of $ \Delta $, so that a simplicial object $ X $ is determined by the objects $ X ([ n]) = X _ {n} $, $ n \geq 0 $( called the $ n $- fibres or $ n $- components of the simplicial object $ X $), and the morphisms
$$ d _ {i} = X ( \delta _ {i} ): X _ {n} \rightarrow X _ {n - 1 } \ \ \textrm{ and } \ \ s _ {i} = X ( \sigma _ {i} ): X _ {n} \rightarrow X _ {n + 1 } $$
(called boundary operators and degeneracy operators, respectively). In case $ {\mathcal C} $ is a category of structured sets, the elements of $ X _ {n} $ are usually called the $ n $- dimensional simplices of $ X $. The mappings $ \delta _ {i} $ and $ \sigma _ {i} $ satisfy the relations
$$ \tag{* } \left . and any relation between these mappings is a consequence of the relations (*). This means that a simplicial object $ X $ can be identified with a system $ \{ X _ {n} , d _ {i} , s _ {i} \} $ of objects $ X _ {n} $, $ n \geq 0 $, of $ {\mathcal C} $ and morphisms $ d _ {i} : X _ {n} \rightarrow X _ {n - 1 } $ and $ s _ {i} : X _ {n} \rightarrow X _ {n + 1 } $, $ 0 \leq i \leq n $, satisfying the relations $$ d _ {i} d _ {j} = d _ {j - 1 } d _ {i} \ \textrm{ if } i < j; $$ $$ s _ {i} s _ {j} = s _ {j + 1 } s _ {i} \ \textrm{ if } i \leq j; $$ $$ d _ {i} s _ {j} = \left \{
Similarly, a co-simplicial object $ X $ can be identified with a system $ \{ X _ {n} , d ^ {i} , s ^ {i} \} $ of objects $ X ^ {n} $, $ n \geq 0 $( $ n $- co-fibres) and morphisms $ d _ {i} : X ^ {n - 1 } \rightarrow X ^ {n} $, $ 0 \leq i \leq n $( co-boundary operators), and $ s ^ {i} : X ^ {n + 1 } \rightarrow X ^ {n} $, $ 0 \leq i \leq n $( co-degeneracy operators), satisfying the relations (*) (with $ \delta _ {i} = d ^ {i} $, $ \sigma _ {i} = s ^ {i} $).
A simplicial mapping $ f: X \rightarrow Y $ between simplicial objects (in the same category $ {\mathcal C} $) is a transformation (morphism) of functors from $ X: \Delta \rightarrow {\mathcal C} $ into $ Y: \Delta \rightarrow {\mathcal C} $, that is, a family of morphisms $ f _ {n} : X _ {n} \rightarrow Y _ {n} $, $ n \geq 0 $, of $ {\mathcal C} $ such that
$$ d _ {i} f _ {n + 1 } = f _ {n} d _ {i} ,\ \ 0 \leq i \leq n + 1, $$
$$ s _ {i} f _ {n} = f _ {n + 1 } s _ {i} ,\ 0 \leq i \leq n. $$
The simplicial objects of $ {\mathcal C} $ and their simplicial mappings form a category, denoted by $ \Delta ^ {0} {\mathcal C} $.
A simplicial homotopy $ h: f \simeq g $ between two simplicial mappings $ f, g: X \rightarrow Y $ between simplicial objects in a category $ {\mathcal C} $ is a family of morphisms $ h _ {i} : X _ {n} \rightarrow Y _ {n + 1 } $, $ 0 \leq i \leq n $, of $ {\mathcal C} $ such that
$$ d _ {0} h _ {0} = f _ {n} ; $$
$$ d _ {n} h _ {n} = g _ {n} ; $$
$$ d _ {i} h _ {j} = \left \{ $$ s _ {i} h _ {j} = \left \{
On the basis of this definition one can reproduce in essence the whole of ordinary homotopy theory in the category $ \Delta ^ {0} {\mathcal C} $, for any category $ {\mathcal C} $. In the case of the category of sets or topological spaces, the geometric realization functor (see Simplicial set) carries this "simplicial" theory into the usual one.
Examples of simplicial objects are a simplicial set, a simplicial topological space, a simplicial algebraic variety, a simplicial group, a simplicial Abelian group, a simplicial Lie algebra, a simplicial smooth manifold, etc.
Every simplicial Abelian group can be made into a chain complex with boundary operator $ d = \sum (- 1) ^ {i} d _ {i} $.
References
| [1] | P. Gabriel, M. Zisman, "Calculus of fractions and homotopy theory" , Springer (1967) |
| [2] | J.P. May, "Simplicial objects in algebraic topology" , v. Nostrand (1967) |
| [3] | K. Lamotke, "Semisimpliziale algebraische Topologie" , Springer (1968) |
Simplicial object in a category. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Simplicial_object_in_a_category&oldid=12531