Difference between revisions of "Shift parameter"
From Encyclopedia of Mathematics
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0849101.png | ||
+ | $#A+1 = 7 n = 0 | ||
+ | $#C+1 = 7 : ~/encyclopedia/old_files/data/S084/S.0804910 Shift parameter | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | where | + | A parameter $ \theta $, |
+ | $ \theta \in \Theta \subset \mathbf R ^ {k} $, | ||
+ | of a family of functions $ \{ \phi _ \theta ( \cdot ) \} $ | ||
+ | which are defined on $ \mathbf R ^ {k} $ | ||
+ | by the formula | ||
+ | |||
+ | $$ | ||
+ | \phi _ \theta ( \cdot ) = \phi ( \cdot - \theta ) \ \ | ||
+ | \textrm{ for } \textrm{ any } \theta \in \Theta , | ||
+ | $$ | ||
+ | |||
+ | where $ \phi ( \cdot ) $ | ||
+ | is a given function on $ \mathbf R ^ {k} $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.A. Ibragimov, R.Z. [R.Z. Khas'minskii] Has'minskii, "Statistical estimation: asymptotic theory" , Springer (1981) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.A. Ibragimov, R.Z. [R.Z. Khas'minskii] Has'minskii, "Statistical estimation: asymptotic theory" , Springer (1981) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
This parameter is also called a location parameter. | This parameter is also called a location parameter. |
Latest revision as of 08:13, 6 June 2020
A parameter $ \theta $,
$ \theta \in \Theta \subset \mathbf R ^ {k} $,
of a family of functions $ \{ \phi _ \theta ( \cdot ) \} $
which are defined on $ \mathbf R ^ {k} $
by the formula
$$ \phi _ \theta ( \cdot ) = \phi ( \cdot - \theta ) \ \ \textrm{ for } \textrm{ any } \theta \in \Theta , $$
where $ \phi ( \cdot ) $ is a given function on $ \mathbf R ^ {k} $.
References
[1] | I.A. Ibragimov, R.Z. [R.Z. Khas'minskii] Has'minskii, "Statistical estimation: asymptotic theory" , Springer (1981) (Translated from Russian) |
Comments
This parameter is also called a location parameter.
How to Cite This Entry:
Shift parameter. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Shift_parameter&oldid=16795
Shift parameter. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Shift_parameter&oldid=16795
This article was adapted from an original article by M.S. Nikulin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article