|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
− | A dominant morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s0844801.png" /> between irreducible algebraic varieties <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s0844802.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s0844803.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s0844804.png" />, for which the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s0844805.png" /> is a [[Separable extension|separable extension]] of the subfield <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s0844806.png" /> (isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s0844807.png" /> in view of the dominance). Non-separable mappings exist only when the characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s0844808.png" /> of the ground field is larger than 0. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s0844809.png" /> is a finite dominant morphism and its degree is not divisible by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448010.png" />, then it is separable. For a separable mapping there exists a non-empty open set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448011.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448012.png" /> the differential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448013.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448014.png" /> surjectively maps the tangent space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448015.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448016.png" />, and conversely: If the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448018.png" /> are non-singular and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448019.png" /> is surjective, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448020.png" /> is a separable mapping.
| + | <!-- |
| + | s0844801.png |
| + | $#A+1 = 37 n = 0 |
| + | $#C+1 = 37 : ~/encyclopedia/old_files/data/S084/S.0804480 Separable mapping |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448021.png" /> of schemes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448023.png" /> is called separated if the diagonal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448024.png" /> is closed. A composite of separated morphisms is separated; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448025.png" /> is separated if and only if for any point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448026.png" /> there is a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448027.png" /> such that the morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448028.png" /> is separated. A morphism of affine schemes is always separated. There are conditions for Noetherian schemes to be separated.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
| + | A dominant morphism $ f $ |
| + | between irreducible algebraic varieties $ X $ |
| + | and $ Y $, |
| + | $ f: X \rightarrow Y $, |
| + | for which the field $ K ( X) $ |
| + | is a [[Separable extension|separable extension]] of the subfield $ f ^ { * } K ( Y) $( |
| + | isomorphic to $ K ( Y) $ |
| + | in view of the dominance). Non-separable mappings exist only when the characteristic $ p $ |
| + | of the ground field is larger than 0. If $ f $ |
| + | is a finite dominant morphism and its degree is not divisible by $ p $, |
| + | then it is separable. For a separable mapping there exists a non-empty open set $ U \subset X $ |
| + | such that for all $ x \in U $ |
| + | the differential $ ( df ) _ {x} $ |
| + | of $ f $ |
| + | surjectively maps the tangent space $ T _ {X,x} $ |
| + | into $ T _ {Y, f ( x) } $, |
| + | and conversely: If the points $ x $ |
| + | and $ f ( x) $ |
| + | are non-singular and $ ( df ) _ {x} $ |
| + | is surjective, then $ f $ |
| + | is a separable mapping. |
| | | |
| + | A morphism $ f: X \rightarrow Y $ |
| + | of schemes $ X $ |
| + | and $ Y $ |
| + | is called separated if the diagonal in $ X \times _ {Y} X $ |
| + | is closed. A composite of separated morphisms is separated; $ f: X \rightarrow Y $ |
| + | is separated if and only if for any point $ y \in Y $ |
| + | there is a neighbourhood $ V \ni y $ |
| + | such that the morphism $ f: f ^ { - 1 } ( V) \rightarrow V $ |
| + | is separated. A morphism of affine schemes is always separated. There are conditions for Noetherian schemes to be separated. |
| | | |
| ====Comments==== | | ====Comments==== |
− | A morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448029.png" /> of algebraic varieties or schemes is called dominant if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448030.png" /> is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448031.png" />. | + | A morphism $ f: X \rightarrow Y $ |
| + | of algebraic varieties or schemes is called dominant if $ f( X) $ |
| + | is dense in $ Y $. |
| | | |
− | In the Russian literature the phrase "separabel'noe otobrazhenie" which literally translates as "separable mapping" is sometimes encountered in the meaning "separated mapping" . | + | In the Russian literature the phrase "separabel'noe otobrazhenie" which literally translates as "separable mapping" is sometimes encountered in the meaning "separated mapping" . |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448032.png" /> be the affine plane, and put <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448033.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448034.png" /> be obtained by glueing two copies of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448035.png" /> along <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448036.png" /> by the identity. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084480/s08448037.png" /> is a non-separated scheme. | + | Let $ A ^ {1} $ |
| + | be the affine plane, and put $ U = A ^ {1} \setminus \{ ( 0, 0) \} $. |
| + | Let $ X $ |
| + | be obtained by glueing two copies of $ A ^ {1} $ |
| + | along $ U $ |
| + | by the identity. Then $ X $ |
| + | is a non-separated scheme. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2 {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table> |
A dominant morphism $ f $
between irreducible algebraic varieties $ X $
and $ Y $,
$ f: X \rightarrow Y $,
for which the field $ K ( X) $
is a separable extension of the subfield $ f ^ { * } K ( Y) $(
isomorphic to $ K ( Y) $
in view of the dominance). Non-separable mappings exist only when the characteristic $ p $
of the ground field is larger than 0. If $ f $
is a finite dominant morphism and its degree is not divisible by $ p $,
then it is separable. For a separable mapping there exists a non-empty open set $ U \subset X $
such that for all $ x \in U $
the differential $ ( df ) _ {x} $
of $ f $
surjectively maps the tangent space $ T _ {X,x} $
into $ T _ {Y, f ( x) } $,
and conversely: If the points $ x $
and $ f ( x) $
are non-singular and $ ( df ) _ {x} $
is surjective, then $ f $
is a separable mapping.
A morphism $ f: X \rightarrow Y $
of schemes $ X $
and $ Y $
is called separated if the diagonal in $ X \times _ {Y} X $
is closed. A composite of separated morphisms is separated; $ f: X \rightarrow Y $
is separated if and only if for any point $ y \in Y $
there is a neighbourhood $ V \ni y $
such that the morphism $ f: f ^ { - 1 } ( V) \rightarrow V $
is separated. A morphism of affine schemes is always separated. There are conditions for Noetherian schemes to be separated.
A morphism $ f: X \rightarrow Y $
of algebraic varieties or schemes is called dominant if $ f( X) $
is dense in $ Y $.
In the Russian literature the phrase "separabel'noe otobrazhenie" which literally translates as "separable mapping" is sometimes encountered in the meaning "separated mapping" .
Let $ A ^ {1} $
be the affine plane, and put $ U = A ^ {1} \setminus \{ ( 0, 0) \} $.
Let $ X $
be obtained by glueing two copies of $ A ^ {1} $
along $ U $
by the identity. Then $ X $
is a non-separated scheme.
References