Namespaces
Variants
Actions

Difference between revisions of "Semi-pseudo-Euclidean space"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A vector space with a degenerate indefinite metric. The semi-pseudo-Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s0842801.png" /> is defined as an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s0842802.png" />-dimensional space in which there are given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s0842803.png" /> scalar products
+
<!--
 +
s0842801.png
 +
$#A+1 = 28 n = 0
 +
$#C+1 = 28 : ~/encyclopedia/old_files/data/S084/S.0804280 Semi\AAhpseudo\AAhEuclidean space
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s0842804.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s0842805.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s0842806.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s0842807.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s0842808.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s0842809.png" /> occurs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s08428010.png" /> times among the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s08428011.png" />. The product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s08428012.png" /> is defined for those vectors for which all coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s08428013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s08428014.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s08428015.png" />, are zero. The first scalar square of an arbitrary vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s08428016.png" /> of a semi-pseudo-Euclidean space is a degenerate quadratic form in the vector coordinates:
+
A vector space with a degenerate indefinite metric. The semi-pseudo-Euclidean space $  {} ^ {l _ {1} \dots l _ {r} } R _ {n} ^ {m _ {1} \dots m _ {r - 1 }  } $
 +
is defined as an  $  n $-
 +
dimensional space in which there are given  $  r $
 +
scalar products
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s08428017.png" /></td> </tr></table>
+
$$
 +
( x, y) _ {a}  = \
 +
\sum \epsilon _ {i _ {a}  }
 +
x ^ {i _ {a} } y ^ {i _ {a} } ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s08428018.png" /> is the index and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s08428019.png" /> is the defect of the space. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s08428020.png" />, the semi-pseudo-Euclidean space is a [[Semi-Euclidean space|semi-Euclidean space]]. Straight lines, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s08428021.png" />-dimensional planes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s08428022.png" />, parallelism, and length of vectors, are defined in semi-pseudo-Euclidean spaces in the same way as in pseudo-Euclidean spaces. In the semi-pseudo-Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s08428023.png" /> one can choose an orthogonal basis consisting of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s08428024.png" /> vectors of imaginary length, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s08428025.png" /> of real length and of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s08428026.png" /> isotropic vectors. Through every point of a semi-pseudo-Euclidean space of defect <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s08428027.png" /> passes an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084280/s08428028.png" />-dimensional isotropic plane all vectors of which are orthogonal to all vectors of the space. See also [[Galilean space|Galilean space]].
+
where $  0 = m _ {0} < m _ {1} < \dots < m _ {r} = n $;
 +
$  a = 1 \dots r $;
 +
$  i _ {a} = m _ {a - 1 }  + 1 \dots m _ {a} $;
 +
$  \epsilon _ {i _ {a}  } = \pm  1 $,
 +
and  $  - 1 $
 +
occurs  $  l _ {a} $
 +
times among the numbers  $  \epsilon _ {i _ {a}  } $.  
 +
The product  $  ( x, y) _ {a} $
 +
is defined for those vectors for which all coordinates  $  x  ^ {i} $,
 +
$  i \leq  m _ {a - 1 }  $
 +
or  $  i> m _ {a} + 1 $,
 +
are zero. The first scalar square of an arbitrary vector  $  x $
 +
of a semi-pseudo-Euclidean space is a degenerate quadratic form in the vector coordinates:
 +
 
 +
$$
 +
( x, x)  = \
 +
- ( x _ {1} )  ^ {2} - \dots -
 +
( x _ {l _ {1}  } )  ^ {2} +
 +
( x _ {l _ {1}  + 1 } )  ^ {2} + \dots +
 +
( x _ {n - d }  )  ^ {2} ,
 +
$$
 +
 
 +
where  $  l $
 +
is the index and $  d = n - m _ {1} $
 +
is the defect of the space. If $  l _ {1} = \dots = l _ {r} = 0 $,  
 +
the semi-pseudo-Euclidean space is a [[Semi-Euclidean space|semi-Euclidean space]]. Straight lines, $  m $-
 +
dimensional planes $  ( m < n) $,  
 +
parallelism, and length of vectors, are defined in semi-pseudo-Euclidean spaces in the same way as in pseudo-Euclidean spaces. In the semi-pseudo-Euclidean space $  {} ^ {l + ( d) } {R _ {n} } $
 +
one can choose an orthogonal basis consisting of $  l $
 +
vectors of imaginary length, of $  n - l - d $
 +
of real length and of $  d $
 +
isotropic vectors. Through every point of a semi-pseudo-Euclidean space of defect $  d $
 +
passes an $  n $-
 +
dimensional isotropic plane all vectors of which are orthogonal to all vectors of the space. See also [[Galilean space|Galilean space]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  B.A. Rozenfel'd,  "Non-Euclidean spaces" , Moscow  (1969)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  B.A. Rozenfel'd,  "Non-Euclidean spaces" , Moscow  (1969)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  B.A. [B.A. Rozenfel'd] Rosenfel'd,  "A history of non-euclidean geometry" , Springer  (1988)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  B.A. [B.A. Rozenfel'd] Rosenfel'd,  "A history of non-euclidean geometry" , Springer  (1988)  (Translated from Russian)</TD></TR></table>

Latest revision as of 08:13, 6 June 2020


A vector space with a degenerate indefinite metric. The semi-pseudo-Euclidean space $ {} ^ {l _ {1} \dots l _ {r} } R _ {n} ^ {m _ {1} \dots m _ {r - 1 } } $ is defined as an $ n $- dimensional space in which there are given $ r $ scalar products

$$ ( x, y) _ {a} = \ \sum \epsilon _ {i _ {a} } x ^ {i _ {a} } y ^ {i _ {a} } , $$

where $ 0 = m _ {0} < m _ {1} < \dots < m _ {r} = n $; $ a = 1 \dots r $; $ i _ {a} = m _ {a - 1 } + 1 \dots m _ {a} $; $ \epsilon _ {i _ {a} } = \pm 1 $, and $ - 1 $ occurs $ l _ {a} $ times among the numbers $ \epsilon _ {i _ {a} } $. The product $ ( x, y) _ {a} $ is defined for those vectors for which all coordinates $ x ^ {i} $, $ i \leq m _ {a - 1 } $ or $ i> m _ {a} + 1 $, are zero. The first scalar square of an arbitrary vector $ x $ of a semi-pseudo-Euclidean space is a degenerate quadratic form in the vector coordinates:

$$ ( x, x) = \ - ( x _ {1} ) ^ {2} - \dots - ( x _ {l _ {1} } ) ^ {2} + ( x _ {l _ {1} + 1 } ) ^ {2} + \dots + ( x _ {n - d } ) ^ {2} , $$

where $ l $ is the index and $ d = n - m _ {1} $ is the defect of the space. If $ l _ {1} = \dots = l _ {r} = 0 $, the semi-pseudo-Euclidean space is a semi-Euclidean space. Straight lines, $ m $- dimensional planes $ ( m < n) $, parallelism, and length of vectors, are defined in semi-pseudo-Euclidean spaces in the same way as in pseudo-Euclidean spaces. In the semi-pseudo-Euclidean space $ {} ^ {l + ( d) } {R _ {n} } $ one can choose an orthogonal basis consisting of $ l $ vectors of imaginary length, of $ n - l - d $ of real length and of $ d $ isotropic vectors. Through every point of a semi-pseudo-Euclidean space of defect $ d $ passes an $ n $- dimensional isotropic plane all vectors of which are orthogonal to all vectors of the space. See also Galilean space.

References

[1] B.A. Rozenfel'd, "Non-Euclidean spaces" , Moscow (1969) (In Russian)

Comments

References

[a1] B.A. [B.A. Rozenfel'd] Rosenfel'd, "A history of non-euclidean geometry" , Springer (1988) (Translated from Russian)
How to Cite This Entry:
Semi-pseudo-Euclidean space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Semi-pseudo-Euclidean_space&oldid=11931
This article was adapted from an original article by D.D. Sokolov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article