Difference between revisions of "Semi-pseudo-Euclidean space"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | s0842801.png | ||
| + | $#A+1 = 28 n = 0 | ||
| + | $#C+1 = 28 : ~/encyclopedia/old_files/data/S084/S.0804280 Semi\AAhpseudo\AAhEuclidean space | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | A vector space with a degenerate indefinite metric. The semi-pseudo-Euclidean space $ {} ^ {l _ {1} \dots l _ {r} } R _ {n} ^ {m _ {1} \dots m _ {r - 1 } } $ | |
| + | is defined as an $ n $- | ||
| + | dimensional space in which there are given $ r $ | ||
| + | scalar products | ||
| − | + | $$ | |
| + | ( x, y) _ {a} = \ | ||
| + | \sum \epsilon _ {i _ {a} } | ||
| + | x ^ {i _ {a} } y ^ {i _ {a} } , | ||
| + | $$ | ||
| − | where < | + | where $ 0 = m _ {0} < m _ {1} < \dots < m _ {r} = n $; |
| + | $ a = 1 \dots r $; | ||
| + | $ i _ {a} = m _ {a - 1 } + 1 \dots m _ {a} $; | ||
| + | $ \epsilon _ {i _ {a} } = \pm 1 $, | ||
| + | and $ - 1 $ | ||
| + | occurs $ l _ {a} $ | ||
| + | times among the numbers $ \epsilon _ {i _ {a} } $. | ||
| + | The product $ ( x, y) _ {a} $ | ||
| + | is defined for those vectors for which all coordinates $ x ^ {i} $, | ||
| + | $ i \leq m _ {a - 1 } $ | ||
| + | or $ i> m _ {a} + 1 $, | ||
| + | are zero. The first scalar square of an arbitrary vector $ x $ | ||
| + | of a semi-pseudo-Euclidean space is a degenerate quadratic form in the vector coordinates: | ||
| + | |||
| + | $$ | ||
| + | ( x, x) = \ | ||
| + | - ( x _ {1} ) ^ {2} - \dots - | ||
| + | ( x _ {l _ {1} } ) ^ {2} + | ||
| + | ( x _ {l _ {1} + 1 } ) ^ {2} + \dots + | ||
| + | ( x _ {n - d } ) ^ {2} , | ||
| + | $$ | ||
| + | |||
| + | where $ l $ | ||
| + | is the index and $ d = n - m _ {1} $ | ||
| + | is the defect of the space. If $ l _ {1} = \dots = l _ {r} = 0 $, | ||
| + | the semi-pseudo-Euclidean space is a [[Semi-Euclidean space|semi-Euclidean space]]. Straight lines, $ m $- | ||
| + | dimensional planes $ ( m < n) $, | ||
| + | parallelism, and length of vectors, are defined in semi-pseudo-Euclidean spaces in the same way as in pseudo-Euclidean spaces. In the semi-pseudo-Euclidean space $ {} ^ {l + ( d) } {R _ {n} } $ | ||
| + | one can choose an orthogonal basis consisting of $ l $ | ||
| + | vectors of imaginary length, of $ n - l - d $ | ||
| + | of real length and of $ d $ | ||
| + | isotropic vectors. Through every point of a semi-pseudo-Euclidean space of defect $ d $ | ||
| + | passes an $ n $- | ||
| + | dimensional isotropic plane all vectors of which are orthogonal to all vectors of the space. See also [[Galilean space|Galilean space]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> B.A. Rozenfel'd, "Non-Euclidean spaces" , Moscow (1969) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> B.A. Rozenfel'd, "Non-Euclidean spaces" , Moscow (1969) (In Russian)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B.A. [B.A. Rozenfel'd] Rosenfel'd, "A history of non-euclidean geometry" , Springer (1988) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B.A. [B.A. Rozenfel'd] Rosenfel'd, "A history of non-euclidean geometry" , Springer (1988) (Translated from Russian)</TD></TR></table> | ||
Latest revision as of 08:13, 6 June 2020
A vector space with a degenerate indefinite metric. The semi-pseudo-Euclidean space $ {} ^ {l _ {1} \dots l _ {r} } R _ {n} ^ {m _ {1} \dots m _ {r - 1 } } $
is defined as an $ n $-
dimensional space in which there are given $ r $
scalar products
$$ ( x, y) _ {a} = \ \sum \epsilon _ {i _ {a} } x ^ {i _ {a} } y ^ {i _ {a} } , $$
where $ 0 = m _ {0} < m _ {1} < \dots < m _ {r} = n $; $ a = 1 \dots r $; $ i _ {a} = m _ {a - 1 } + 1 \dots m _ {a} $; $ \epsilon _ {i _ {a} } = \pm 1 $, and $ - 1 $ occurs $ l _ {a} $ times among the numbers $ \epsilon _ {i _ {a} } $. The product $ ( x, y) _ {a} $ is defined for those vectors for which all coordinates $ x ^ {i} $, $ i \leq m _ {a - 1 } $ or $ i> m _ {a} + 1 $, are zero. The first scalar square of an arbitrary vector $ x $ of a semi-pseudo-Euclidean space is a degenerate quadratic form in the vector coordinates:
$$ ( x, x) = \ - ( x _ {1} ) ^ {2} - \dots - ( x _ {l _ {1} } ) ^ {2} + ( x _ {l _ {1} + 1 } ) ^ {2} + \dots + ( x _ {n - d } ) ^ {2} , $$
where $ l $ is the index and $ d = n - m _ {1} $ is the defect of the space. If $ l _ {1} = \dots = l _ {r} = 0 $, the semi-pseudo-Euclidean space is a semi-Euclidean space. Straight lines, $ m $- dimensional planes $ ( m < n) $, parallelism, and length of vectors, are defined in semi-pseudo-Euclidean spaces in the same way as in pseudo-Euclidean spaces. In the semi-pseudo-Euclidean space $ {} ^ {l + ( d) } {R _ {n} } $ one can choose an orthogonal basis consisting of $ l $ vectors of imaginary length, of $ n - l - d $ of real length and of $ d $ isotropic vectors. Through every point of a semi-pseudo-Euclidean space of defect $ d $ passes an $ n $- dimensional isotropic plane all vectors of which are orthogonal to all vectors of the space. See also Galilean space.
References
| [1] | B.A. Rozenfel'd, "Non-Euclidean spaces" , Moscow (1969) (In Russian) |
Comments
References
| [a1] | B.A. [B.A. Rozenfel'd] Rosenfel'd, "A history of non-euclidean geometry" , Springer (1988) (Translated from Russian) |
Semi-pseudo-Euclidean space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Semi-pseudo-Euclidean_space&oldid=11931