Difference between revisions of "Segre imbedding"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0838001.png | ||
+ | $#A+1 = 20 n = 0 | ||
+ | $#C+1 = 20 : ~/encyclopedia/old_files/data/S083/S.0803800 Segre imbedding | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | where | + | The imbedding $ \phi : P ^ {n} \times P ^ {m} \rightarrow P ^ {N} $ |
+ | of the product $ P ^ {n} \times P ^ {m} $ | ||
+ | of projective spaces into the projective space $ P ^ {N} $, | ||
+ | where $ N = nm + n + m $. | ||
+ | If $ x = ( u _ {0} : \dots : u _ {n} ) \in P ^ {n} $, | ||
+ | $ y = ( v _ {0} : \dots : v _ {m} ) \in P ^ {m} $, | ||
+ | and $ w _ {i,j} $( | ||
+ | $ i = 0 \dots n $; | ||
+ | $ j = 0 \dots m $) | ||
+ | are homogeneous coordinates in $ P ^ {N} $, | ||
+ | then the mapping is defined by the formula: | ||
+ | |||
+ | $$ | ||
+ | \phi ( x , y) = ( w _ {i,j} ) \in P ^ {N} , | ||
+ | $$ | ||
+ | |||
+ | where $ w _ {i,j} = u _ {i} v _ {j} $. | ||
+ | The mapping $ \phi $ | ||
+ | is well-defined and is a closed imbedding. The image $ \phi ( P ^ {n} \times P ^ {m} ) $ | ||
+ | of a Segre imbedding is called a Segre variety. The case when $ n = m = 1 $ | ||
+ | has a simple geometrical meaning: $ \phi ( P ^ {1} \times P ^ {1} ) $ | ||
+ | is the non-singular quadric in $ P ^ {3} $ | ||
+ | with equation $ w _ {11} w _ {00} = w _ {01} w _ {10} $. | ||
+ | The images $ \phi ( x \times P ^ {1} ) $ | ||
+ | and $ \phi ( P ^ {1} \times y) $ | ||
+ | give two families of generating lines of the quadric. | ||
The terminology is in honour of B. Segre. | The terminology is in honour of B. Segre. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR></table> |
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2 {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table> |
Latest revision as of 08:12, 6 June 2020
The imbedding $ \phi : P ^ {n} \times P ^ {m} \rightarrow P ^ {N} $
of the product $ P ^ {n} \times P ^ {m} $
of projective spaces into the projective space $ P ^ {N} $,
where $ N = nm + n + m $.
If $ x = ( u _ {0} : \dots : u _ {n} ) \in P ^ {n} $,
$ y = ( v _ {0} : \dots : v _ {m} ) \in P ^ {m} $,
and $ w _ {i,j} $(
$ i = 0 \dots n $;
$ j = 0 \dots m $)
are homogeneous coordinates in $ P ^ {N} $,
then the mapping is defined by the formula:
$$ \phi ( x , y) = ( w _ {i,j} ) \in P ^ {N} , $$
where $ w _ {i,j} = u _ {i} v _ {j} $. The mapping $ \phi $ is well-defined and is a closed imbedding. The image $ \phi ( P ^ {n} \times P ^ {m} ) $ of a Segre imbedding is called a Segre variety. The case when $ n = m = 1 $ has a simple geometrical meaning: $ \phi ( P ^ {1} \times P ^ {1} ) $ is the non-singular quadric in $ P ^ {3} $ with equation $ w _ {11} w _ {00} = w _ {01} w _ {10} $. The images $ \phi ( x \times P ^ {1} ) $ and $ \phi ( P ^ {1} \times y) $ give two families of generating lines of the quadric.
The terminology is in honour of B. Segre.
References
[1] | I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) MR0447223 Zbl 0362.14001 |
Comments
References
[a1] | R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2 MR0463157 Zbl 0367.14001 |
Segre imbedding. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Segre_imbedding&oldid=17234