Namespaces
Variants
Actions

Difference between revisions of "Schwarz differential"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
The principal part of the [[Schwarz symmetric derivative|Schwarz symmetric derivative]] of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083500/s0835001.png" />. More precisely, if for a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083500/s0835002.png" /> of a real variable,
+
<!--
 +
s0835001.png
 +
$#A+1 = 7 n = 0
 +
$#C+1 = 7 : ~/encyclopedia/old_files/data/S083/S.0803500 Schwarz differential
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083500/s0835003.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083500/s0835004.png" /></td> </tr></table>
+
The principal part of the [[Schwarz symmetric derivative|Schwarz symmetric derivative]] of order  $  n $.  
 +
More precisely, if for a function  $  f $
 +
of a real variable,
  
then the expression <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083500/s0835005.png" /> is called the Schwarz differential of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083500/s0835006.png" />. When a Schwarz differential is mentioned without specifying the order, it is usually assumed that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083500/s0835007.png" />.
+
$$
 +
\Delta  ^ {n} f ( x, \Delta x)  = \sum _ { k= } 0 ^ { n }  \left (
 +
\begin{array}{c}
 +
n \\
 +
k
 +
\end{array}
 +
\right ) (- 1)  ^ {k}
 +
f \left ( x + n-
 +
\frac{2k}{2}
 +
\Delta x \right ) =
 +
$$
 +
 
 +
$$
 +
= \
 +
A \cdot ( \Delta x)  ^ {n} + o(( \Delta x)  ^ {n} ),
 +
$$
 +
 
 +
then the expression  $  A \cdot ( \Delta x)  ^ {n} $
 +
is called the Schwarz differential of order $  n $.  
 +
When a Schwarz differential is mentioned without specifying the order, it is usually assumed that $  n= 2 $.

Revision as of 08:12, 6 June 2020


The principal part of the Schwarz symmetric derivative of order $ n $. More precisely, if for a function $ f $ of a real variable,

$$ \Delta ^ {n} f ( x, \Delta x) = \sum _ { k= } 0 ^ { n } \left ( \begin{array}{c} n \\ k \end{array} \right ) (- 1) ^ {k} f \left ( x + n- \frac{2k}{2} \Delta x \right ) = $$

$$ = \ A \cdot ( \Delta x) ^ {n} + o(( \Delta x) ^ {n} ), $$

then the expression $ A \cdot ( \Delta x) ^ {n} $ is called the Schwarz differential of order $ n $. When a Schwarz differential is mentioned without specifying the order, it is usually assumed that $ n= 2 $.

How to Cite This Entry:
Schwarz differential. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Schwarz_differential&oldid=18277
This article was adapted from an original article by T.P. Lukashenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article