Namespaces
Variants
Actions

Difference between revisions of "Schur lemma"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s0834501.png" /> are two algebraically-irreducible representations of some group or algebra in two vector spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s0834502.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s0834503.png" />, respectively, then any [[Intertwining operator|intertwining operator]] for the representations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s0834504.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s0834505.png" /> is either zero or provides a one-to-one mapping from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s0834506.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s0834507.png" /> (in this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s0834508.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s0834509.png" /> are equivalent). The lemma was established by I. Schur
+
<!--
 +
s0834501.png
 +
$#A+1 = 43 n = 0
 +
$#C+1 = 43 : ~/encyclopedia/old_files/data/S083/S.0803450 Schur lemma
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
for finite-dimensional irreducible representations. The description of the family of intertwining operators for two given representations is an analogue of the Schur lemma. In particular, the following statement is often called Schur's lemma: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345011.png" /> are unitary irreducible representations of some group or are symmetric irreducible representations of some algebra in two Hilbert spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345013.png" />, respectively, then any closed linear operator from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345014.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345015.png" /> intertwining <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345017.png" /> is either zero or unitary (in this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345019.png" /> are unitarily equivalent). The description of the family of intertwining operators for representations that allow for an expansion in a direct integral is called the continuous analogue of Schur's lemma.
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
If  $  T, S $
 +
are two algebraically-irreducible representations of some group or algebra in two vector spaces  $  X $
 +
and  $  Y $,
 +
respectively, then any [[Intertwining operator|intertwining operator]] for the representations  $  T $
 +
and  $  S $
 +
is either zero or provides a one-to-one mapping from  $  X $
 +
onto  $  Y $(
 +
in this case  $  T $
 +
and  $  S $
 +
are equivalent). The lemma was established by I. Schur
 +
 
 +
for finite-dimensional irreducible representations. The description of the family of intertwining operators for two given representations is an analogue of the Schur lemma. In particular, the following statement is often called Schur's lemma: If $  T $
 +
and $  S $
 +
are unitary irreducible representations of some group or are symmetric irreducible representations of some algebra in two Hilbert spaces $  X $
 +
and $  Y $,  
 +
respectively, then any closed linear operator from $  X $
 +
into $  Y $
 +
intertwining $  T $
 +
and $  S $
 +
is either zero or unitary (in this case $  T $
 +
and $  S $
 +
are unitarily equivalent). The description of the family of intertwining operators for representations that allow for an expansion in a direct integral is called the continuous analogue of Schur's lemma.
  
 
''A.I. Shtern''
 
''A.I. Shtern''
Line 7: Line 38:
 
The two following statements are generalizations of Schur's lemma to families of operators acting on infinite-dimensional spaces.
 
The two following statements are generalizations of Schur's lemma to families of operators acting on infinite-dimensional spaces.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345020.png" /> be two representations in Hilbert spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345022.png" /> of a symmetric ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345023.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345024.png" /> be a closed linear operator with zero kernel and dense domain and range. If the relations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345025.png" /> hold for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345026.png" />, then the representations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345028.png" /> are unitarily equivalent.
+
Let $  T _ {x} , S _ {x} $
 +
be two representations in Hilbert spaces $  {\mathcal H} _ {T} $
 +
and $  {\mathcal H} _ {S} $
 +
of a symmetric ring $  R $.  
 +
Let $  A: {\mathcal H} _ {T} \rightarrow {\mathcal H} _ {S} $
 +
be a closed linear operator with zero kernel and dense domain and range. If the relations $  S _ {x} A \subset  AT _ {x} $
 +
hold for all $  x \in R $,  
 +
then the representations $  T _ {x} $
 +
and $  S _ {x} $
 +
are unitarily equivalent.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345029.png" /> be an algebra of continuous linear operators in a locally convex space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345030.png" /> containing a non-zero compact operator and having no non-trivial closed invariant subspaces. Then any operator permutable with all operators from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345031.png" /> is a multiple of the identity operator.
+
Let $  R $
 +
be an algebra of continuous linear operators in a locally convex space $  E $
 +
containing a non-zero compact operator and having no non-trivial closed invariant subspaces. Then any operator permutable with all operators from $  R $
 +
is a multiple of the identity operator.
  
 
====References====
 
====References====
Line 17: Line 60:
  
 
====Comments====
 
====Comments====
The Schur lemma has a number of immediate consequences. An important one is that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345032.png" /> is an algebraically-irreducible representation in a linear space over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345033.png" />, then the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345034.png" /> of intertwining operators of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345035.png" /> is a skew-field over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345036.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345037.png" />, this means that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345038.png" />, i.e. every intertwining operator is a multiple of the identity. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345039.png" />, this means that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345040.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345041.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345042.png" />, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083450/s08345043.png" />-algebra of quaternions.
+
The Schur lemma has a number of immediate consequences. An important one is that if $  T $
 +
is an algebraically-irreducible representation in a linear space over a field $  K $,  
 +
then the set $  {\mathcal C} ( T) $
 +
of intertwining operators of $  T $
 +
is a skew-field over $  K $.  
 +
If $  K = \mathbf C $,  
 +
this means that $  {\mathcal C} ( T) = \mathbf C $,  
 +
i.e. every intertwining operator is a multiple of the identity. If $  K = \mathbf R $,  
 +
this means that $  {\mathcal C} ( T) = \mathbf R $,  
 +
$  \mathbf C $
 +
or $  \mathbf H $,  
 +
the $  \mathbf R $-
 +
algebra of quaternions.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C.W. Curtis,  I. Reiner,  "Representation theory of finite groups and associative algebras" , Interscience  (1962)  pp. §44</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.-P. Serre,  "Linear representations of finite groups" , Springer  (1982)  (Translated from French)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  C.E. Rickart,  "General theory of Banach algebras" , v. Nostrand  (1960)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  B. Huppert,  "Endliche Gruppen" , '''1''' , Springer  (1967)  pp. 64</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  N. Bourbaki,  "Algèbre" , ''Eléments de mathématiques'' , Hermann  (1958)  pp. Chapt. 8. Modules et anneaux semi-simples</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C.W. Curtis,  I. Reiner,  "Representation theory of finite groups and associative algebras" , Interscience  (1962)  pp. §44</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.-P. Serre,  "Linear representations of finite groups" , Springer  (1982)  (Translated from French)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  C.E. Rickart,  "General theory of Banach algebras" , v. Nostrand  (1960)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  B. Huppert,  "Endliche Gruppen" , '''1''' , Springer  (1967)  pp. 64</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  N. Bourbaki,  "Algèbre" , ''Eléments de mathématiques'' , Hermann  (1958)  pp. Chapt. 8. Modules et anneaux semi-simples</TD></TR></table>

Latest revision as of 08:12, 6 June 2020


If $ T, S $ are two algebraically-irreducible representations of some group or algebra in two vector spaces $ X $ and $ Y $, respectively, then any intertwining operator for the representations $ T $ and $ S $ is either zero or provides a one-to-one mapping from $ X $ onto $ Y $( in this case $ T $ and $ S $ are equivalent). The lemma was established by I. Schur

for finite-dimensional irreducible representations. The description of the family of intertwining operators for two given representations is an analogue of the Schur lemma. In particular, the following statement is often called Schur's lemma: If $ T $ and $ S $ are unitary irreducible representations of some group or are symmetric irreducible representations of some algebra in two Hilbert spaces $ X $ and $ Y $, respectively, then any closed linear operator from $ X $ into $ Y $ intertwining $ T $ and $ S $ is either zero or unitary (in this case $ T $ and $ S $ are unitarily equivalent). The description of the family of intertwining operators for representations that allow for an expansion in a direct integral is called the continuous analogue of Schur's lemma.

A.I. Shtern

The two following statements are generalizations of Schur's lemma to families of operators acting on infinite-dimensional spaces.

Let $ T _ {x} , S _ {x} $ be two representations in Hilbert spaces $ {\mathcal H} _ {T} $ and $ {\mathcal H} _ {S} $ of a symmetric ring $ R $. Let $ A: {\mathcal H} _ {T} \rightarrow {\mathcal H} _ {S} $ be a closed linear operator with zero kernel and dense domain and range. If the relations $ S _ {x} A \subset AT _ {x} $ hold for all $ x \in R $, then the representations $ T _ {x} $ and $ S _ {x} $ are unitarily equivalent.

Let $ R $ be an algebra of continuous linear operators in a locally convex space $ E $ containing a non-zero compact operator and having no non-trivial closed invariant subspaces. Then any operator permutable with all operators from $ R $ is a multiple of the identity operator.

References

[1] I. Schur, "Arithmetische Untersuchungen über endliche Gruppen linearer Substitutionen" Sitzungsber. Akad. Wiss. Berlin (1906) pp. 164–184
[2] A.A. Kirillov, "Elements of the theory of representations" , Springer (1976) (Translated from Russian)
[3] M.A. Naimark, "Normed rings" , Reidel (1984) (Translated from Russian)
[4] A.I. Shtern, "Theory of group representations" , Springer (1982) (Translated from Russian)
[5] D.P. Zhelobenko, "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian)
[6] V.I. Lomonosov, "Invariant subspaces for the family of operators which commute with a completely continuous operator" Funct. Anal. Appl. , 7 : 3 (1973) pp. 213–214 Funktsional. Anal. i Prilozhen. , 7 : 3 (1973) pp. 55–56

V.I. Lomonosov

Comments

The Schur lemma has a number of immediate consequences. An important one is that if $ T $ is an algebraically-irreducible representation in a linear space over a field $ K $, then the set $ {\mathcal C} ( T) $ of intertwining operators of $ T $ is a skew-field over $ K $. If $ K = \mathbf C $, this means that $ {\mathcal C} ( T) = \mathbf C $, i.e. every intertwining operator is a multiple of the identity. If $ K = \mathbf R $, this means that $ {\mathcal C} ( T) = \mathbf R $, $ \mathbf C $ or $ \mathbf H $, the $ \mathbf R $- algebra of quaternions.

References

[a1] C.W. Curtis, I. Reiner, "Representation theory of finite groups and associative algebras" , Interscience (1962) pp. §44
[a2] J.-P. Serre, "Linear representations of finite groups" , Springer (1982) (Translated from French)
[a3] C.E. Rickart, "General theory of Banach algebras" , v. Nostrand (1960)
[a4] B. Huppert, "Endliche Gruppen" , 1 , Springer (1967) pp. 64
[a5] N. Bourbaki, "Algèbre" , Eléments de mathématiques , Hermann (1958) pp. Chapt. 8. Modules et anneaux semi-simples
How to Cite This Entry:
Schur lemma. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Schur_lemma&oldid=17919
This article was adapted from an original article by A.I. Shtern, V.I. Lomonosov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article