Difference between revisions of "Schläfli integral"
Ulf Rehmann (talk | contribs) m (moved Schläfli integral to Schlaefli integral: ascii title) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0833601.png | ||
+ | $#A+1 = 11 n = 0 | ||
+ | $#C+1 = 11 : ~/encyclopedia/old_files/data/S083/S.0803360 Schl\AGafli integral | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | An integral representation of the [[Bessel functions|Bessel functions]] for any $ n $: | |
− | + | $$ \tag{* } | |
+ | J _ {n} ( z) = | ||
+ | \frac{1} \pi | ||
+ | \int\limits _ { 0 } ^ \pi \cos ( n \theta - z \sin \theta ) d | ||
+ | \theta + | ||
+ | $$ | ||
− | + | $$ | |
+ | - | ||
+ | \frac{\sin n \pi } \pi | ||
+ | \int\limits _ { 0 } ^ \infty | ||
+ | e ^ {- n \theta - z \sinh \theta } d \theta , | ||
+ | $$ | ||
+ | |||
+ | when $ \mathop{\rm Re} z > 0 $. | ||
+ | It is valid for all integer $ n $. | ||
+ | Formula (*) can be derived from | ||
+ | |||
+ | $$ | ||
+ | J _ {n} = | ||
+ | \frac{z ^ {n} }{2 ^ {\pi + 1 } \pi i } | ||
+ | \int\limits _ {- \infty } ^ { ( } 0+) t ^ {-} n- 1 \mathop{\rm exp} \left ( t - | ||
+ | \frac{z ^ {2} }{4t} | ||
+ | \right ) dt. | ||
+ | $$ | ||
Formula (*) was first given by L. Schläfli . | Formula (*) was first given by L. Schläfli . | ||
Line 13: | Line 43: | ||
An integral representation of the [[Legendre polynomials|Legendre polynomials]]: | An integral representation of the [[Legendre polynomials|Legendre polynomials]]: | ||
− | + | $$ | |
+ | P _ {n} ( z) = | ||
+ | \frac{1}{2 \pi i } | ||
+ | \int\limits _ { C } | ||
+ | \frac{( t ^ {2} - 1) ^ {n} }{2 ^ {n} | ||
+ | ( t- z) ^ {n+} 1 } | ||
+ | dt, | ||
+ | $$ | ||
− | where | + | where $ C $ |
+ | is a contour making one counter-clockwise turn around $ z $. | ||
+ | This representation was first given by L. Schläfli [[#References|[2]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Schläfli, "Eine Bemerkung zu Herrn Neumanns Untersuchungen über die Besselschen Funktionen" ''Math. Ann.'' , '''3''' : 1 (1871) pp. 134–149</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L. Schläfli, "Über die zwei Heine'schen Kugelfunktionen mit beliebigem Parameter und ihre ausnahmslose Darstellung durch bestimmte Integrale" , H. Koerber , Berlin (1881)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 6</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A. Krazer, W. Franz, "Transzendente Funktionen" , Akademie Verlag (1960)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Schläfli, "Eine Bemerkung zu Herrn Neumanns Untersuchungen über die Besselschen Funktionen" ''Math. Ann.'' , '''3''' : 1 (1871) pp. 134–149</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L. Schläfli, "Über die zwei Heine'schen Kugelfunktionen mit beliebigem Parameter und ihre ausnahmslose Darstellung durch bestimmte Integrale" , H. Koerber , Berlin (1881)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 6</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A. Krazer, W. Franz, "Transzendente Funktionen" , Akademie Verlag (1960)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The reduction of the Schläfli integral to the second integral representation for | + | The reduction of the Schläfli integral to the second integral representation for $ J _ {n} ( z) $ |
+ | is valid for unrestricted values of $ n $( | ||
+ | see also [[#References|[a3]]], 6.2 | ||
and ). The integral representation for the Legendre polynomials follows from the [[Rodrigues formula|Rodrigues formula]], similarly as for the [[Jacobi polynomials|Jacobi polynomials]] (cf. [[#References|[a2]]], (4.4.6) and (4.8.1)). | and ). The integral representation for the Legendre polynomials follows from the [[Rodrigues formula|Rodrigues formula]], similarly as for the [[Jacobi polynomials|Jacobi polynomials]] (cf. [[#References|[a2]]], (4.4.6) and (4.8.1)). |
Latest revision as of 08:12, 6 June 2020
An integral representation of the Bessel functions for any $ n $:
$$ \tag{* } J _ {n} ( z) = \frac{1} \pi \int\limits _ { 0 } ^ \pi \cos ( n \theta - z \sin \theta ) d \theta + $$
$$ - \frac{\sin n \pi } \pi \int\limits _ { 0 } ^ \infty e ^ {- n \theta - z \sinh \theta } d \theta , $$
when $ \mathop{\rm Re} z > 0 $. It is valid for all integer $ n $. Formula (*) can be derived from
$$ J _ {n} = \frac{z ^ {n} }{2 ^ {\pi + 1 } \pi i } \int\limits _ {- \infty } ^ { ( } 0+) t ^ {-} n- 1 \mathop{\rm exp} \left ( t - \frac{z ^ {2} }{4t} \right ) dt. $$
Formula (*) was first given by L. Schläfli .
An integral representation of the Legendre polynomials:
$$ P _ {n} ( z) = \frac{1}{2 \pi i } \int\limits _ { C } \frac{( t ^ {2} - 1) ^ {n} }{2 ^ {n} ( t- z) ^ {n+} 1 } dt, $$
where $ C $ is a contour making one counter-clockwise turn around $ z $. This representation was first given by L. Schläfli [2].
References
[1] | L. Schläfli, "Eine Bemerkung zu Herrn Neumanns Untersuchungen über die Besselschen Funktionen" Math. Ann. , 3 : 1 (1871) pp. 134–149 |
[2] | L. Schläfli, "Über die zwei Heine'schen Kugelfunktionen mit beliebigem Parameter und ihre ausnahmslose Darstellung durch bestimmte Integrale" , H. Koerber , Berlin (1881) |
[3] | E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 6 |
[4] | A. Krazer, W. Franz, "Transzendente Funktionen" , Akademie Verlag (1960) |
Comments
The reduction of the Schläfli integral to the second integral representation for $ J _ {n} ( z) $ is valid for unrestricted values of $ n $( see also [a3], 6.2
and ). The integral representation for the Legendre polynomials follows from the Rodrigues formula, similarly as for the Jacobi polynomials (cf. [a2], (4.4.6) and (4.8.1)).
References
[a1] | F.W.J. Olver, "Asymptotics and special functions" , Acad. Press (1974) |
[a2] | G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975) |
[a3] | G.N. Watson, "A treatise on the theory of Bessel functions" , 1 , Cambridge Univ. Press (1952) |
Schläfli integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Schl%C3%A4fli_integral&oldid=23005