Difference between revisions of "Rényi test"
Ulf Rehmann (talk | contribs) m (moved Renyi test to Rényi test over redirect: accented title) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | A | + | <!-- |
+ | r0812701.png | ||
+ | $#A+1 = 55 n = 0 | ||
+ | $#C+1 = 55 : ~/encyclopedia/old_files/data/R081/R.0801270 R\Aeenyi test | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A [[Statistical test|statistical test]] used for testing a simple non-parametric hypothesis $ H _ {0} $( | |
+ | cf. [[Non-parametric methods in statistics|Non-parametric methods in statistics]]), according to which independent identically-distributed random variables $ X _ {1} \dots X _ {n} $ | ||
+ | have a given continuous distribution function $ F( x) $, | ||
+ | against the alternatives: | ||
− | + | $$ | |
+ | H _ {1} ^ {+} : \sup _ {| x | < \infty } \psi [ F( x)] ( {\mathsf E} F _ {n} ( x) - F( x)) | ||
+ | > 0, | ||
+ | $$ | ||
− | + | $$ | |
+ | H _ {1} ^ {-} : \inf _ {| x | < | ||
+ | \infty } \psi [ F( x)]( {\mathsf E} F _ {n} ( x) - F( x)) < 0, | ||
+ | $$ | ||
− | + | $$ | |
+ | H _ {1} : \sup _ {| x | < \infty } \ | ||
+ | \psi [ F( x)] | {\mathsf E} F _ {n} ( x) - F( x) | > 0, | ||
+ | $$ | ||
− | where | + | where $ F _ {n} ( x) $ |
+ | is the empirical distribution function constructed with respect to the sample $ X _ {1} \dots X _ {n} $ | ||
+ | and $ \psi ( F ) $, | ||
+ | $ \psi \geq 0 $, | ||
+ | is a weight function. If | ||
− | + | $$ | |
+ | \psi [ F( x)] = \left \{ | ||
− | + | where $ a $ | |
+ | is any fixed number from the interval $ [ 0, 1] $, | ||
+ | then the Rényi test, which was intended for testing $ H _ {0} $ | ||
+ | against the alternatives $ H _ {1} ^ {+} $, | ||
+ | $ H _ {1} ^ {-} $, | ||
+ | $ H _ {1} $, | ||
+ | is based on the Rényi statistics | ||
− | + | $$ | |
+ | R _ {n} ^ {+} ( a, 1) = \ | ||
+ | \sup _ {F( x) \geq a } | ||
+ | \frac{F _ {n} ( x) - F( x) }{F(} | ||
+ | x) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | \max _ {F( X _ {(} m) ) \geq a } | ||
+ | \frac{( m / n) - F( X _ {(} m) ) }{F( X _ {(} m) ) } | ||
+ | , | ||
+ | $$ | ||
− | + | $$ | |
+ | R _ {n} ^ {-} ( a, 1) = - \inf _ {F( x) | ||
+ | \geq a } | ||
+ | \frac{F _ {n} ( x) - F( x) }{F(} | ||
+ | x) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | \max _ {F( X _ {(} m) ) \geq a } | ||
+ | \frac{F( X _ {(} m) ) - ( m- 1) / n }{F( X _ {(} m) ) } | ||
+ | , | ||
+ | $$ | ||
− | + | $$ | |
+ | R _ {n} ( a, 1) = \sup _ {F( x) \geq a } | ||
+ | \frac{| F _ {n} ( x) - F( x) | }{F(} | ||
+ | x) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | \max \{ R _ {n} ^ {+} ( a, 1), R _ {n} ^ {-} ( a, 1) \} , | ||
+ | $$ | ||
− | + | where $ X _ {(} 1) \dots X _ {(} n) $ | |
+ | are the members of the series of order statistics | ||
− | + | $$ | |
+ | X _ {(} 1) \leq \dots \leq X _ {(} n) , | ||
+ | $$ | ||
− | + | constructed with respect to the observations $ X _ {1} \dots X _ {n} $. | |
− | + | The statistics $ R _ {n} ^ {+} ( a, 1) $ | |
+ | and $ R _ {n} ^ {-} ( a, 1) $ | ||
+ | satisfy the same probability law and, if $ 0 < a \leq 1 $, | ||
+ | then | ||
− | + | $$ \tag{1 } | |
+ | \lim\limits _ {n \rightarrow \infty } {\mathsf P} \left \{ \sqrt { | ||
+ | \frac{na}{1-} | ||
+ | a } R _ {n} ^ {+} ( a, 1) < | ||
+ | x \right \} = \ | ||
+ | 2 \Phi ( x) - 1,\ x > 0, | ||
+ | $$ | ||
− | < | + | $$ \tag{2 } |
+ | \lim\limits _ {n \rightarrow \infty } {\mathsf P} \left \{ \sqrt { | ||
+ | \frac{na}{1-} | ||
+ | a | ||
+ | } R _ {n} ( a, 1) < x \right \} = L( x),\ x > 0, | ||
+ | $$ | ||
− | + | where $ \Phi ( x) $ | |
+ | is the distribution function of the standard normal law (cf. [[Normal distribution|Normal distribution]]) and $ L( x) $ | ||
+ | is the Rényi distribution function, | ||
− | + | $$ | |
+ | L( x) = | ||
+ | \frac{4} \pi | ||
+ | \sum _ { k= } 0 ^ \infty | ||
+ | \frac{(- 1) ^ {k} }{2k+} | ||
+ | 1 \mathop{\rm exp} \left \{ - | ||
− | + | \frac{( 2k+ 1) ^ {2} \pi ^ {2} }{8x ^ {2} } | |
+ | \right \} . | ||
+ | $$ | ||
− | + | If $ a = 0 $, | |
+ | then | ||
− | + | $$ | |
+ | {\mathsf P} \{ R _ {n} ^ {+} ( 0, 1) \geq x \} = \ | ||
+ | 1 - | ||
+ | \frac{x}{1+} | ||
+ | x ,\ x > 0. | ||
+ | $$ | ||
− | + | It follows from (1) and (2) that for larger values of $ n $ | |
+ | the following approximate values may be used to calculate the $ Q $- | ||
+ | percent critical values $ ( 0\pct< Q < 50\pct) $ | ||
+ | for the statistics $ R _ {n} ^ {+} ( a, 1) $ | ||
+ | and $ R _ {n} ( a, 1) $: | ||
− | + | $$ | |
+ | \sqrt {1- | ||
+ | \frac{a}{na} | ||
+ | } \Phi ^ {-} 1 ( 1 - 0.005 Q) \ \textrm{ and } \ \ | ||
+ | \sqrt {1- | ||
+ | \frac{a}{na} | ||
+ | } L ^ {-} 1 ( 1 - 0.01 Q) , | ||
+ | $$ | ||
− | when calculating the values of the Rényi distribution function | + | respectively, where $ \Phi ^ {-} 1 ( x) $ |
+ | and $ L ^ {-} 1 ( x) $ | ||
+ | are the inverse functions to $ \Phi ( x) $ | ||
+ | and $ L( x) $, | ||
+ | respectively. This means that if $ 0\pct < Q < 10\pct $, | ||
+ | then $ \Phi ^ {-} 1 ( 1 - 0.005Q) \approx L ^ {-} 1 ( 1 - 0.02Q) $. | ||
+ | |||
+ | Furthermore, if $ x > 2.99 $, | ||
+ | then it is advisable to use the approximate equation | ||
+ | |||
+ | $$ | ||
+ | L( x) \approx 4 \Phi ( x) - 3 | ||
+ | $$ | ||
+ | |||
+ | when calculating the values of the Rényi distribution function $ L( x) $; | ||
+ | its degree of error does not exceed $ 5 \cdot 10 ^ {-} 7 $. | ||
In addition to the Rényi test discused here, there are also similar tests, corresponding to the weight function | In addition to the Rényi test discused here, there are also similar tests, corresponding to the weight function | ||
− | + | $$ | |
+ | \phi [ F( x)] = \left \{ | ||
− | where | + | where $ a $ |
+ | is any fixed number from the interval $ [ 0, 1] $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Rényi, "On the theory of order statistics" ''Acta Math. Acad. Sci. Hungar.'' , '''4''' (1953) pp. 191–231</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J. Hájek, Z. Sidák, "Theory of rank tests" , Acad. Press (1967)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.N. Bol'shev, N.V. Smirnov, "Tables of mathematical statistics" , ''Libr. math. tables'' , '''46''' , Nauka (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Rényi, "On the theory of order statistics" ''Acta Math. Acad. Sci. Hungar.'' , '''4''' (1953) pp. 191–231</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J. Hájek, Z. Sidák, "Theory of rank tests" , Acad. Press (1967)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.N. Bol'shev, N.V. Smirnov, "Tables of mathematical statistics" , ''Libr. math. tables'' , '''46''' , Nauka (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova)</TD></TR></table> |
Revision as of 08:12, 6 June 2020
A statistical test used for testing a simple non-parametric hypothesis $ H _ {0} $(
cf. Non-parametric methods in statistics), according to which independent identically-distributed random variables $ X _ {1} \dots X _ {n} $
have a given continuous distribution function $ F( x) $,
against the alternatives:
$$ H _ {1} ^ {+} : \sup _ {| x | < \infty } \psi [ F( x)] ( {\mathsf E} F _ {n} ( x) - F( x)) > 0, $$
$$ H _ {1} ^ {-} : \inf _ {| x | < \infty } \psi [ F( x)]( {\mathsf E} F _ {n} ( x) - F( x)) < 0, $$
$$ H _ {1} : \sup _ {| x | < \infty } \ \psi [ F( x)] | {\mathsf E} F _ {n} ( x) - F( x) | > 0, $$
where $ F _ {n} ( x) $ is the empirical distribution function constructed with respect to the sample $ X _ {1} \dots X _ {n} $ and $ \psi ( F ) $, $ \psi \geq 0 $, is a weight function. If
$$ \psi [ F( x)] = \left \{ where $ a $ is any fixed number from the interval $ [ 0, 1] $, then the Rényi test, which was intended for testing $ H _ {0} $ against the alternatives $ H _ {1} ^ {+} $, $ H _ {1} ^ {-} $, $ H _ {1} $, is based on the Rényi statistics $$ R _ {n} ^ {+} ( a, 1) = \ \sup _ {F( x) \geq a } \frac{F _ {n} ( x) - F( x) }{F(}
x) =
$$ $$ = \ \max _ {F( X _ {(} m) ) \geq a } \frac{( m / n) - F( X _ {(} m) ) }{F( X _ {(} m) ) }
,
$$ $$ R _ {n} ^ {-} ( a, 1) = - \inf _ {F( x) \geq a } \frac{F _ {n} ( x) - F( x) }{F(}
x) =
$$ $$ = \ \max _ {F( X _ {(} m) ) \geq a } \frac{F( X _ {(} m) ) - ( m- 1) / n }{F( X _ {(} m) ) }
,
$$ $$ R _ {n} ( a, 1) = \sup _ {F( x) \geq a } \frac{| F _ {n} ( x) - F( x) | }{F(}
x) =
$$ $$ = \ \max \{ R _ {n} ^ {+} ( a, 1), R _ {n} ^ {-} ( a, 1) \} , $$ where $ X _ {(} 1) \dots X _ {(} n) $ are the members of the series of order statistics $$ X _ {(} 1) \leq \dots \leq X _ {(} n) , $$ constructed with respect to the observations $ X _ {1} \dots X _ {n} $. The statistics $ R _ {n} ^ {+} ( a, 1) $ and $ R _ {n} ^ {-} ( a, 1) $ satisfy the same probability law and, if $ 0 < a \leq 1 $, then $$ \tag{1 } \lim\limits _ {n \rightarrow \infty } {\mathsf P} \left \{ \sqrt { \frac{na}{1-}
a } R _ {n} ^ {+} ( a, 1) <
x \right \} = \ 2 \Phi ( x) - 1,\ x > 0, $$ $$ \tag{2 } \lim\limits _ {n \rightarrow \infty } {\mathsf P} \left \{ \sqrt { \frac{na}{1-}
a } R _ {n} ( a, 1) < x \right \} = L( x),\ x > 0,
$$ where $ \Phi ( x) $ is the distribution function of the standard normal law (cf. [[Normal distribution|Normal distribution]]) and $ L( x) $ is the Rényi distribution function, $$ L( x) = \frac{4} \pi
\sum _ { k= } 0 ^ \infty
\frac{(- 1) ^ {k} }{2k+}
1 \mathop{\rm exp} \left \{ -
\frac{( 2k+ 1) ^ {2} \pi ^ {2} }{8x ^ {2} }
\right \} .
$$ If $ a = 0 $, then $$ {\mathsf P} \{ R _ {n} ^ {+} ( 0, 1) \geq x \} = \ 1 - \frac{x}{1+}
x ,\ x > 0.
$$ It follows from (1) and (2) that for larger values of $ n $ the following approximate values may be used to calculate the $ Q $- percent critical values $ ( 0\pct< Q < 50\pct) $ for the statistics $ R _ {n} ^ {+} ( a, 1) $ and $ R _ {n} ( a, 1) $: $$ \sqrt {1- \frac{a}{na}
} \Phi ^ {-} 1 ( 1 - 0.005 Q) \ \textrm{ and } \ \
\sqrt {1- \frac{a}{na}
} L ^ {-} 1 ( 1 - 0.01 Q) ,
$$ respectively, where $ \Phi ^ {-} 1 ( x) $ and $ L ^ {-} 1 ( x) $ are the inverse functions to $ \Phi ( x) $ and $ L( x) $, respectively. This means that if $ 0\pct < Q < 10\pct $, then $ \Phi ^ {-} 1 ( 1 - 0.005Q) \approx L ^ {-} 1 ( 1 - 0.02Q) $. Furthermore, if $ x > 2.99 $, then it is advisable to use the approximate equation $$ L( x) \approx 4 \Phi ( x) - 3 $$ when calculating the values of the Rényi distribution function $ L( x) $; its degree of error does not exceed $ 5 \cdot 10 ^ {-} 7 $. In addition to the Rényi test discused here, there are also similar tests, corresponding to the weight function $$ \phi [ F( x)] = \left \{
where $ a $ is any fixed number from the interval $ [ 0, 1] $.
References
[1] | A. Rényi, "On the theory of order statistics" Acta Math. Acad. Sci. Hungar. , 4 (1953) pp. 191–231 |
[2] | J. Hájek, Z. Sidák, "Theory of rank tests" , Acad. Press (1967) |
[3] | L.N. Bol'shev, N.V. Smirnov, "Tables of mathematical statistics" , Libr. math. tables , 46 , Nauka (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova) |
Rényi test. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=R%C3%A9nyi_test&oldid=23512