Difference between revisions of "Riesz inequality"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | r0822501.png | ||
+ | $#A+1 = 23 n = 0 | ||
+ | $#C+1 = 23 : ~/encyclopedia/old_files/data/R082/R.0802250 Riesz inequality | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | < | + | Let $ \{ \phi _ {n} \} $ |
+ | be an [[Orthonormal system|orthonormal system]] of functions on an interval $ [ a, b] $ | ||
+ | and let $ | \phi _ {n} | \leq M $ | ||
+ | almost everywhere on $ [ a, b] $ | ||
+ | for any $ n $. | ||
+ | |||
+ | a) If $ f \in L _ {p} [ a, b] $, | ||
+ | $ 1 < p \leq 2 $, | ||
+ | then its Fourier coefficients with respect to $ \{ \phi _ {n} \} $, | ||
+ | |||
+ | $$ | ||
+ | c _ {n} = \int\limits _ { a } ^ { b } f \overline \phi \; _ {n} dx | ||
+ | $$ | ||
satisfy the Riesz inequality | satisfy the Riesz inequality | ||
− | + | $$ | |
+ | \| \{ c _ {n} \} \| _ {q} \leq M ^ {2/p-} 1 \| f \| _ {p} ,\ \ | ||
+ | |||
+ | \frac{1}{p} | ||
+ | + | ||
+ | \frac{1}{q} | ||
+ | = 1. | ||
+ | $$ | ||
+ | |||
+ | b) For any sequence $ \{ c _ {n} \} $ | ||
+ | with $ \| \{ c _ {n} \} \| _ {p} < \infty $, | ||
+ | $ 1 < p \leq 2 $, | ||
+ | there exists a function $ f \in L _ {q} [ a, b] $ | ||
+ | with $ c _ {n} $ | ||
+ | as its Fourier coefficients and satisfying the Riesz inequality | ||
− | + | $$ | |
+ | \| f \| _ {q} \leq M ^ {2/p-} 1 \| \{ c _ {n} \} \| _ {p} ,\ \ | ||
− | + | \frac{1}{p} | |
+ | + | ||
+ | \frac{1}{q} | ||
+ | = 1. | ||
+ | $$ | ||
− | If | + | If $ f \in L _ {p} [ 0, 2 \pi ] $, |
+ | $ 1 < p \leq \infty $, | ||
+ | then the [[Conjugate function|conjugate function]] $ \overline{f}\; \in L _ {p} [ 0, 2 \pi ] $ | ||
+ | and the Riesz inequality | ||
− | + | $$ | |
+ | \| \overline{f}\; \| _ {p} \leq A _ {p} \| f \| _ {p} $$ | ||
− | holds, where | + | holds, where $ A _ {p} $ |
+ | is a constant depending only on $ p $. | ||
Assertion 1) was for the first time proved by F. Riesz [[#References|[1]]]; particular cases of it were studied earlier by W.H. Young and F. Hausdorff. Assertion 2) was first proved by M. Riesz [[#References|[2]]]. | Assertion 1) was for the first time proved by F. Riesz [[#References|[1]]]; particular cases of it were studied earlier by W.H. Young and F. Hausdorff. Assertion 2) was first proved by M. Riesz [[#References|[2]]]. | ||
Line 23: | Line 67: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> F. Riesz, "Ueber eine Verallgemeinerung der Parsevalschen Formel" ''Math. Z.'' , '''18''' (1923) pp. 117–124</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Riesz, "Sur les fonctions conjuguées" ''Math. Z.'' , '''27''' (1927) pp. 218–244</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> F. Riesz, "Ueber eine Verallgemeinerung der Parsevalschen Formel" ''Math. Z.'' , '''18''' (1923) pp. 117–124</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Riesz, "Sur les fonctions conjuguées" ''Math. Z.'' , '''27''' (1927) pp. 218–244</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | For 2) see also [[Interpolation of operators|Interpolation of operators]] (it is a consequence of the Marcinkiewicz interpolation theorem and the weak type | + | For 2) see also [[Interpolation of operators|Interpolation of operators]] (it is a consequence of the Marcinkiewicz interpolation theorem and the weak type $ ( 1, 1) $ |
+ | of the conjugation operator) and [[#References|[a3]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.L. Butzer, R.J. Nessel, "Fourier analysis and approximation" , '''1''' , Birkhäuser (1971) pp. Chapt. 8</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> F. Hausdorff, "Eine Ausdehnung des Parsevalschen Satzes über Fourier-reihen" ''Math. Z.'' , '''16''' (1923) pp. 163–169</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> E.M. Stein, G. Weiss, "Fourier analysis on Euclidean spaces" , Princeton Univ. Press (1975) pp. Chapt. VI, §5</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.L. Butzer, R.J. Nessel, "Fourier analysis and approximation" , '''1''' , Birkhäuser (1971) pp. Chapt. 8</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> F. Hausdorff, "Eine Ausdehnung des Parsevalschen Satzes über Fourier-reihen" ''Math. Z.'' , '''16''' (1923) pp. 163–169</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> E.M. Stein, G. Weiss, "Fourier analysis on Euclidean spaces" , Princeton Univ. Press (1975) pp. Chapt. VI, §5</TD></TR></table> |
Latest revision as of 08:11, 6 June 2020
Let $ \{ \phi _ {n} \} $
be an orthonormal system of functions on an interval $ [ a, b] $
and let $ | \phi _ {n} | \leq M $
almost everywhere on $ [ a, b] $
for any $ n $.
a) If $ f \in L _ {p} [ a, b] $, $ 1 < p \leq 2 $, then its Fourier coefficients with respect to $ \{ \phi _ {n} \} $,
$$ c _ {n} = \int\limits _ { a } ^ { b } f \overline \phi \; _ {n} dx $$
satisfy the Riesz inequality
$$ \| \{ c _ {n} \} \| _ {q} \leq M ^ {2/p-} 1 \| f \| _ {p} ,\ \ \frac{1}{p} + \frac{1}{q} = 1. $$
b) For any sequence $ \{ c _ {n} \} $ with $ \| \{ c _ {n} \} \| _ {p} < \infty $, $ 1 < p \leq 2 $, there exists a function $ f \in L _ {q} [ a, b] $ with $ c _ {n} $ as its Fourier coefficients and satisfying the Riesz inequality
$$ \| f \| _ {q} \leq M ^ {2/p-} 1 \| \{ c _ {n} \} \| _ {p} ,\ \ \frac{1}{p} + \frac{1}{q} = 1. $$
If $ f \in L _ {p} [ 0, 2 \pi ] $, $ 1 < p \leq \infty $, then the conjugate function $ \overline{f}\; \in L _ {p} [ 0, 2 \pi ] $ and the Riesz inequality
$$ \| \overline{f}\; \| _ {p} \leq A _ {p} \| f \| _ {p} $$
holds, where $ A _ {p} $ is a constant depending only on $ p $.
Assertion 1) was for the first time proved by F. Riesz [1]; particular cases of it were studied earlier by W.H. Young and F. Hausdorff. Assertion 2) was first proved by M. Riesz [2].
References
[1] | F. Riesz, "Ueber eine Verallgemeinerung der Parsevalschen Formel" Math. Z. , 18 (1923) pp. 117–124 |
[2] | M. Riesz, "Sur les fonctions conjuguées" Math. Z. , 27 (1927) pp. 218–244 |
[3] | N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian) |
[4] | A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988) |
Comments
For 2) see also Interpolation of operators (it is a consequence of the Marcinkiewicz interpolation theorem and the weak type $ ( 1, 1) $ of the conjugation operator) and [a3].
References
[a1] | P.L. Butzer, R.J. Nessel, "Fourier analysis and approximation" , 1 , Birkhäuser (1971) pp. Chapt. 8 |
[a2] | F. Hausdorff, "Eine Ausdehnung des Parsevalschen Satzes über Fourier-reihen" Math. Z. , 16 (1923) pp. 163–169 |
[a3] | E.M. Stein, G. Weiss, "Fourier analysis on Euclidean spaces" , Princeton Univ. Press (1975) pp. Chapt. VI, §5 |
Riesz inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Riesz_inequality&oldid=15767