Difference between revisions of "Riesz convexity theorem"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | r0822301.png | ||
+ | $#A+1 = 39 n = 0 | ||
+ | $#C+1 = 39 : ~/encyclopedia/old_files/data/R082/R.0802230 Riesz convexity theorem | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | |||
+ | The logarithm, $ \mathop{\rm ln} M( \alpha , \beta ) $, | ||
+ | of the least upper bound of the modulus $ M( \alpha , \beta ) $ | ||
+ | of the bilinear form | ||
+ | |||
+ | $$ | ||
+ | \sum _ { i= } 1 ^ { m } \sum _ { j= } 1 ^ { n } a _ {ij} x _ {i} y _ {j} $$ | ||
on the set | on the set | ||
− | + | $$ | |
+ | \sum _ { i= } 1 ^ { m } | x _ {i} | ^ {1/ \alpha } \leq 1,\ \ | ||
+ | \sum _ { j= } 1 ^ { m } | y _ {j} | ^ {1/ \beta } \leq 1 | ||
+ | $$ | ||
+ | |||
+ | (if $ \alpha = 0 $ | ||
+ | or $ \beta = 0 $, | ||
+ | then, respectively, $ | x _ {i} | \leq 1 $, | ||
+ | $ i = 1 \dots m $ | ||
+ | or $ | y _ {j} | \leq 1 $, | ||
+ | $ j = 1 \dots n $) | ||
+ | is a [[Convex function (of a real variable)|convex function (of a real variable)]] of the parameters $ \alpha $ | ||
+ | and $ \beta $ | ||
+ | in the domain $ \alpha \geq 0 $, | ||
+ | $ \beta \geq 0 $ | ||
+ | if the form is real $ ( a _ {ij} , x _ {i} , y _ {j} \in \mathbf R _ {+} ) $, | ||
+ | and it is a convex function (of a real variable) in the domain $ 0 \leq \alpha , \beta \leq 1 $, | ||
+ | $ \alpha + \beta \geq 1 $ | ||
+ | if the form is complex $ ( a _ {ij} , x _ {i} , y _ {j} \in \mathbf C ) $. | ||
+ | This theorem was proved by M. Riesz [[#References|[1]]]. | ||
+ | |||
+ | A generalization of this theorem to linear operators is (see [[#References|[3]]]): Let $ L _ {p} $, | ||
+ | $ 1 \leq p \leq \infty $, | ||
+ | be the set of all complex-valued functions on some measure space that are summable to the $ p $- | ||
+ | th power for $ 1 \leq p < \infty $ | ||
+ | and that are essentially bounded for $ p = \infty $. | ||
+ | Let, further, $ T: L _ {p _ {i} } \rightarrow L _ {q _ {i} } $, | ||
+ | $ 1 \leq p _ {i} , q _ {j} \leq \infty $, | ||
+ | $ i = 0, 1 $, | ||
+ | be a continuous linear operator. Then $ T $ | ||
+ | is a continuous operator from $ L _ {p _ {t} } $ | ||
+ | to $ L _ {q _ {t} } $, | ||
+ | where | ||
− | + | $$ | |
− | + | \frac{1}{p _ {t} } | |
+ | = 1- | ||
+ | \frac{t}{p _ {0} } | ||
+ | + | ||
+ | \frac{t}{p _ {1} } | ||
+ | ,\ \ | ||
− | + | \frac{1}{q _ {t} } | |
+ | = 1- | ||
+ | \frac{t}{q _ {0} } | ||
+ | + | ||
+ | \frac{t}{q _ {1} } | ||
+ | ,\ \ | ||
+ | t \in [ 0, 1], | ||
+ | $$ | ||
− | and where the norm | + | and where the norm $ k _ {t} $ |
+ | of $ T $( | ||
+ | as an operator from $ L _ {p _ {t} } $ | ||
+ | to $ L _ {q _ {t} } $) | ||
+ | satisfies the inequality $ k _ {t} \leq k _ {0} ^ {1-} t k _ {1} ^ {t} $( | ||
+ | i.e. it is a logarithmically convex function). This theorem is called the Riesz–Thorin interpolation theorem, and sometimes also the Riesz convexity theorem [[#References|[4]]]. | ||
− | The Riesz convexity theorem is at the origin of a whole trend of analysis in which one studies interpolation properties of linear operators. Among the first generalizations of the Riesz convexity theorem is the Marcinkiewicz interpolation theorem [[#References|[5]]], which ensures for | + | The Riesz convexity theorem is at the origin of a whole trend of analysis in which one studies interpolation properties of linear operators. Among the first generalizations of the Riesz convexity theorem is the Marcinkiewicz interpolation theorem [[#References|[5]]], which ensures for $ 1 \leq p _ {i} \leq q _ {i} \leq \infty $, |
+ | $ i = 0, 1 $, | ||
+ | the continuity of the operator $ T: L _ {p _ {t} } \rightarrow L _ {q _ {t} } $, | ||
+ | $ t \in ( 0, 1) $, | ||
+ | under weaker assumptions than those of the Riesz–Thorin theorem. See also [[Interpolation of operators|Interpolation of operators]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Riesz, "Sur les maxima des formes bilinéaires et sur les fonctionnelles linéaires" ''Acta Math.'' , '''49''' (1926) pp. 465–497</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.H. Hardy, J.E. Littlewood, G. Pólya, "Inequalities" , Cambridge Univ. Press (1934)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.O. Thorin, "An extension of a convexity theorem due to M. Riesz" ''K. Fysiogr. Saallskap. i Lund Forh.'' , '''8''' : 14 (1936)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E.M. Stein, G. Weiss, "Introduction to Fourier analysis on Euclidean spaces" , Princeton Univ. Press (1971)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> J. Marcinkiewicz, "Sur l'interpolation d'opérateurs" ''C.R. Acad. Sci. Paris'' , '''208''' (1939) pp. 1272–1273</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> S.K. Krein, "Interpolation of linear operators" , Amer. Math. Soc. (1982) (Translated from Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> H. Triebel, "Interpolation theory" , Springer (1978)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Riesz, "Sur les maxima des formes bilinéaires et sur les fonctionnelles linéaires" ''Acta Math.'' , '''49''' (1926) pp. 465–497</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.H. Hardy, J.E. Littlewood, G. Pólya, "Inequalities" , Cambridge Univ. Press (1934)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.O. Thorin, "An extension of a convexity theorem due to M. Riesz" ''K. Fysiogr. Saallskap. i Lund Forh.'' , '''8''' : 14 (1936)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E.M. Stein, G. Weiss, "Introduction to Fourier analysis on Euclidean spaces" , Princeton Univ. Press (1971)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> J. Marcinkiewicz, "Sur l'interpolation d'opérateurs" ''C.R. Acad. Sci. Paris'' , '''208''' (1939) pp. 1272–1273</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> S.K. Krein, "Interpolation of linear operators" , Amer. Math. Soc. (1982) (Translated from Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> H. Triebel, "Interpolation theory" , Springer (1978)</TD></TR></table> |
Revision as of 08:11, 6 June 2020
The logarithm, $ \mathop{\rm ln} M( \alpha , \beta ) $,
of the least upper bound of the modulus $ M( \alpha , \beta ) $
of the bilinear form
$$ \sum _ { i= } 1 ^ { m } \sum _ { j= } 1 ^ { n } a _ {ij} x _ {i} y _ {j} $$
on the set
$$ \sum _ { i= } 1 ^ { m } | x _ {i} | ^ {1/ \alpha } \leq 1,\ \ \sum _ { j= } 1 ^ { m } | y _ {j} | ^ {1/ \beta } \leq 1 $$
(if $ \alpha = 0 $ or $ \beta = 0 $, then, respectively, $ | x _ {i} | \leq 1 $, $ i = 1 \dots m $ or $ | y _ {j} | \leq 1 $, $ j = 1 \dots n $) is a convex function (of a real variable) of the parameters $ \alpha $ and $ \beta $ in the domain $ \alpha \geq 0 $, $ \beta \geq 0 $ if the form is real $ ( a _ {ij} , x _ {i} , y _ {j} \in \mathbf R _ {+} ) $, and it is a convex function (of a real variable) in the domain $ 0 \leq \alpha , \beta \leq 1 $, $ \alpha + \beta \geq 1 $ if the form is complex $ ( a _ {ij} , x _ {i} , y _ {j} \in \mathbf C ) $. This theorem was proved by M. Riesz [1].
A generalization of this theorem to linear operators is (see [3]): Let $ L _ {p} $, $ 1 \leq p \leq \infty $, be the set of all complex-valued functions on some measure space that are summable to the $ p $- th power for $ 1 \leq p < \infty $ and that are essentially bounded for $ p = \infty $. Let, further, $ T: L _ {p _ {i} } \rightarrow L _ {q _ {i} } $, $ 1 \leq p _ {i} , q _ {j} \leq \infty $, $ i = 0, 1 $, be a continuous linear operator. Then $ T $ is a continuous operator from $ L _ {p _ {t} } $ to $ L _ {q _ {t} } $, where
$$ \frac{1}{p _ {t} } = 1- \frac{t}{p _ {0} } + \frac{t}{p _ {1} } ,\ \ \frac{1}{q _ {t} } = 1- \frac{t}{q _ {0} } + \frac{t}{q _ {1} } ,\ \ t \in [ 0, 1], $$
and where the norm $ k _ {t} $ of $ T $( as an operator from $ L _ {p _ {t} } $ to $ L _ {q _ {t} } $) satisfies the inequality $ k _ {t} \leq k _ {0} ^ {1-} t k _ {1} ^ {t} $( i.e. it is a logarithmically convex function). This theorem is called the Riesz–Thorin interpolation theorem, and sometimes also the Riesz convexity theorem [4].
The Riesz convexity theorem is at the origin of a whole trend of analysis in which one studies interpolation properties of linear operators. Among the first generalizations of the Riesz convexity theorem is the Marcinkiewicz interpolation theorem [5], which ensures for $ 1 \leq p _ {i} \leq q _ {i} \leq \infty $, $ i = 0, 1 $, the continuity of the operator $ T: L _ {p _ {t} } \rightarrow L _ {q _ {t} } $, $ t \in ( 0, 1) $, under weaker assumptions than those of the Riesz–Thorin theorem. See also Interpolation of operators.
References
[1] | M. Riesz, "Sur les maxima des formes bilinéaires et sur les fonctionnelles linéaires" Acta Math. , 49 (1926) pp. 465–497 |
[2] | G.H. Hardy, J.E. Littlewood, G. Pólya, "Inequalities" , Cambridge Univ. Press (1934) |
[3] | G.O. Thorin, "An extension of a convexity theorem due to M. Riesz" K. Fysiogr. Saallskap. i Lund Forh. , 8 : 14 (1936) |
[4] | E.M. Stein, G. Weiss, "Introduction to Fourier analysis on Euclidean spaces" , Princeton Univ. Press (1971) |
[5] | J. Marcinkiewicz, "Sur l'interpolation d'opérateurs" C.R. Acad. Sci. Paris , 208 (1939) pp. 1272–1273 |
[6] | S.K. Krein, "Interpolation of linear operators" , Amer. Math. Soc. (1982) (Translated from Russian) |
[7] | H. Triebel, "Interpolation theory" , Springer (1978) |
Riesz convexity theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Riesz_convexity_theorem&oldid=18910