Difference between revisions of "Riemann derivative"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | r0818601.png | ||
+ | $#A+1 = 10 n = 0 | ||
+ | $#C+1 = 10 : ~/encyclopedia/old_files/data/R081/R.0801860 Riemann derivative, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
+ | ''Schwarzian derivative, second symmetric derivative, of a function $ f $ | ||
+ | at a point $ x _ {0} $'' | ||
The limit | The limit | ||
− | + | $$ | |
+ | D ^ {2} f( x _ {0} ) = \ | ||
+ | \lim\limits _ {h \rightarrow 0 } | ||
+ | \frac{f( x _ {0} + h) - 2f( x _ {0} ) + f( x _ {0} - h) }{h ^ {2} | ||
+ | } | ||
+ | . | ||
+ | $$ | ||
− | It was introduced by B. Riemann in 1854, who proved that if at a point | + | It was introduced by B. Riemann in 1854, who proved that if at a point $ x _ {0} $ |
+ | the second derivative $ f ^ { \prime\prime } ( x _ {0} ) $ | ||
+ | exists, then so does the Riemann derivative and $ D ^ {2} f( x _ {0} ) = f ^ { \prime\prime } ( x _ {0} ) $. | ||
+ | The upper and lower limits of | ||
− | + | $$ | |
− | + | \frac{f( x _ {0} + h) - 2f( x _ {0} ) + f( x _ {0} + h) }{h ^ {2} } | |
− | + | $$ | |
+ | as $ h \rightarrow 0 $ | ||
+ | are called the upper ( $ {\overline{D}\; } {} ^ {2} f( x _ {0} ) $) | ||
+ | and lower ( $ \underline{D} ^ {2} f( x _ {0} ) $) | ||
+ | Riemann derivative, respectively. | ||
+ | Riemann derivatives find wide application in the theory of the representation of functions by trigonometric series, and in particular in connection with the [[Riemann summation method|Riemann summation method]]. | ||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T.M. Apostol, "Mathematical analysis" , Blaisdell (1957)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> B. Riemann, "Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe" , ''Gesammelte Math. Abhandlungen'' , Dover, reprint (1957) pp. 227–264</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J. Wolff, "Fourier'sche Reihen" , Noordhoff (1931)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T.M. Apostol, "Mathematical analysis" , Blaisdell (1957)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> B. Riemann, "Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe" , ''Gesammelte Math. Abhandlungen'' , Dover, reprint (1957) pp. 227–264</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J. Wolff, "Fourier'sche Reihen" , Noordhoff (1931)</TD></TR></table> |
Latest revision as of 08:11, 6 June 2020
Schwarzian derivative, second symmetric derivative, of a function $ f $
at a point $ x _ {0} $
The limit
$$ D ^ {2} f( x _ {0} ) = \ \lim\limits _ {h \rightarrow 0 } \frac{f( x _ {0} + h) - 2f( x _ {0} ) + f( x _ {0} - h) }{h ^ {2} } . $$
It was introduced by B. Riemann in 1854, who proved that if at a point $ x _ {0} $ the second derivative $ f ^ { \prime\prime } ( x _ {0} ) $ exists, then so does the Riemann derivative and $ D ^ {2} f( x _ {0} ) = f ^ { \prime\prime } ( x _ {0} ) $. The upper and lower limits of
$$ \frac{f( x _ {0} + h) - 2f( x _ {0} ) + f( x _ {0} + h) }{h ^ {2} } $$
as $ h \rightarrow 0 $ are called the upper ( $ {\overline{D}\; } {} ^ {2} f( x _ {0} ) $) and lower ( $ \underline{D} ^ {2} f( x _ {0} ) $) Riemann derivative, respectively.
Riemann derivatives find wide application in the theory of the representation of functions by trigonometric series, and in particular in connection with the Riemann summation method.
Comments
References
[a1] | T.M. Apostol, "Mathematical analysis" , Blaisdell (1957) |
[a2] | B. Riemann, "Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe" , Gesammelte Math. Abhandlungen , Dover, reprint (1957) pp. 227–264 |
[a3] | J. Wolff, "Fourier'sche Reihen" , Noordhoff (1931) |
Riemann derivative. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Riemann_derivative&oldid=14871