Difference between revisions of "Replica of an endomorphism"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | r0813301.png | ||
+ | $#A+1 = 36 n = 0 | ||
+ | $#C+1 = 36 : ~/encyclopedia/old_files/data/R081/R.0801330 Replica of an endomorphism | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | '' $ X $ | |
+ | of a finite-dimensional vector space $ V $ | ||
+ | over a field $ k $ | ||
+ | of characteristic 0'' | ||
− | + | An element of the smallest algebraic Lie subalgebra $ \mathfrak{ gl } ( V) $ | |
+ | containing $ X $( | ||
+ | see [[Lie algebra, algebraic|Lie algebra, algebraic]]). An endomorphism $ X ^ \prime \in \mathfrak{ gl } ( V) $ | ||
+ | is a replica of the endomorphism $ X $ | ||
+ | if and only if each tensor over $ V $ | ||
+ | that is annihilated by $ X $ | ||
+ | is also annihilated by $ X ^ \prime $. | ||
+ | |||
+ | Each replica of an endomorphism $ X $ | ||
+ | can be written as a polynomial in $ X $ | ||
+ | with coefficients from the field $ k $ | ||
+ | and without absolute term. The semi-simple and nilpotent components of an endomorphism $ X $( | ||
+ | see [[Jordan decomposition|Jordan decomposition]], 2) are replicas of it. A subalgebra of the Lie algebra $ \mathfrak{ gl } ( V) $ | ||
+ | is algebraic if and only if it contains all replicas of all its elements. An endomorphism $ X $ | ||
+ | of a space $ V $ | ||
+ | is nilpotent if and only if $ \mathop{\rm Tr} XX ^ \prime = 0 $ | ||
+ | for any replica $ X ^ \prime $ | ||
+ | of $ X $. | ||
+ | |||
+ | Let $ k $ | ||
+ | be an algebraically closed field, let $ \phi $ | ||
+ | be an automorphism of $ k $, | ||
+ | let $ X $ | ||
+ | be a semi-simple endomorphism of the space $ V $, | ||
+ | and let $ \phi ( X) $ | ||
+ | be an endomorphism of $ V $ | ||
+ | such that any eigenvector of $ X $ | ||
+ | corresponding to an eigenvalue $ \lambda $ | ||
+ | is also an eigenvector for $ \phi ( X) $, | ||
+ | but corresponding to the eigenvalue $ \phi ( \lambda ) $. | ||
+ | An endomorphism $ X ^ \prime \in \mathfrak{ gl } ( V) $ | ||
+ | is a replica of the endomorphism $ X $ | ||
+ | if and only if $ X ^ \prime = \phi ( X) $ | ||
+ | for some automorphism $ \phi $ | ||
+ | of the field $ k $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.-P. Serre, "Lie algebras and Lie groups" , Benjamin (1965) (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> , ''Theórie des algèbres de Lie. Topologie des groupes de Lie'' , ''Sem. S. Lie'' , '''Ie année 1954–1955''' , Secr. Math. Univ. Paris (1955)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> C. Chevalley, "Théorie des groupes de Lie" , '''2''' , Hermann (1951)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.-P. Serre, "Lie algebras and Lie groups" , Benjamin (1965) (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> , ''Theórie des algèbres de Lie. Topologie des groupes de Lie'' , ''Sem. S. Lie'' , '''Ie année 1954–1955''' , Secr. Math. Univ. Paris (1955)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> C. Chevalley, "Théorie des groupes de Lie" , '''2''' , Hermann (1951)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Bourbaki, "Groupes et algèbres de Lie" , Hermann (1975) pp. Chapts. VII-VIII</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Bourbaki, "Groupes et algèbres de Lie" , Hermann (1975) pp. Chapts. VII-VIII</TD></TR></table> |
Latest revision as of 08:11, 6 June 2020
$ X $
of a finite-dimensional vector space $ V $
over a field $ k $
of characteristic 0
An element of the smallest algebraic Lie subalgebra $ \mathfrak{ gl } ( V) $ containing $ X $( see Lie algebra, algebraic). An endomorphism $ X ^ \prime \in \mathfrak{ gl } ( V) $ is a replica of the endomorphism $ X $ if and only if each tensor over $ V $ that is annihilated by $ X $ is also annihilated by $ X ^ \prime $.
Each replica of an endomorphism $ X $ can be written as a polynomial in $ X $ with coefficients from the field $ k $ and without absolute term. The semi-simple and nilpotent components of an endomorphism $ X $( see Jordan decomposition, 2) are replicas of it. A subalgebra of the Lie algebra $ \mathfrak{ gl } ( V) $ is algebraic if and only if it contains all replicas of all its elements. An endomorphism $ X $ of a space $ V $ is nilpotent if and only if $ \mathop{\rm Tr} XX ^ \prime = 0 $ for any replica $ X ^ \prime $ of $ X $.
Let $ k $ be an algebraically closed field, let $ \phi $ be an automorphism of $ k $, let $ X $ be a semi-simple endomorphism of the space $ V $, and let $ \phi ( X) $ be an endomorphism of $ V $ such that any eigenvector of $ X $ corresponding to an eigenvalue $ \lambda $ is also an eigenvector for $ \phi ( X) $, but corresponding to the eigenvalue $ \phi ( \lambda ) $. An endomorphism $ X ^ \prime \in \mathfrak{ gl } ( V) $ is a replica of the endomorphism $ X $ if and only if $ X ^ \prime = \phi ( X) $ for some automorphism $ \phi $ of the field $ k $.
References
[1] | J.-P. Serre, "Lie algebras and Lie groups" , Benjamin (1965) (Translated from French) |
[2] | , Theórie des algèbres de Lie. Topologie des groupes de Lie , Sem. S. Lie , Ie année 1954–1955 , Secr. Math. Univ. Paris (1955) |
[3] | C. Chevalley, "Théorie des groupes de Lie" , 2 , Hermann (1951) |
Comments
References
[a1] | N. Bourbaki, "Groupes et algèbres de Lie" , Hermann (1975) pp. Chapts. VII-VIII |
Replica of an endomorphism. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Replica_of_an_endomorphism&oldid=12812