Namespaces
Variants
Actions

Difference between revisions of "Relative homological algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A [[Homological algebra|homological algebra]] associated with a pair of Abelian categories <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r0810001.png" /> and a fixed functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r0810002.png" /> (cf. [[Abelian category|Abelian category]]). The functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r0810003.png" /> is taken to be additive, exact and faithful. A short exact sequence of objects of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r0810004.png" />,
+
<!--
 +
r0810001.png
 +
$#A+1 = 42 n = 0
 +
$#C+1 = 42 : ~/encyclopedia/old_files/data/R081/R.0801000 Relative homological algebra
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r0810005.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A [[Homological algebra|homological algebra]] associated with a pair of Abelian categories  $  ( \mathfrak A , \mathfrak M ) $
 +
and a fixed functor  $  \Delta : \mathfrak A \rightarrow \mathfrak M $(
 +
cf. [[Abelian category|Abelian category]]). The functor  $  \Delta $
 +
is taken to be additive, exact and faithful. A short exact sequence of objects of  $  \mathfrak A $,
 +
 
 +
$$
 +
0  \rightarrow  A  \rightarrow  B  \rightarrow  C  \rightarrow  0
 +
$$
  
 
is said to be admissible if the exact sequence
 
is said to be admissible if the exact sequence
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r0810006.png" /></td> </tr></table>
+
$$
 +
0 \rightarrow  \Delta A  \rightarrow  \Delta B  \rightarrow  \Delta C  \rightarrow  0
 +
$$
  
splits in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r0810007.png" /> (cf. [[Split sequence|Split sequence]]). By means of the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r0810008.png" /> of admissible exact sequences, the class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r0810009.png" />-projective (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100010.png" />-injective) objects is defined as the class of those objects <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100011.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100012.png" />) for which the functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100013.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100014.png" />) is exact on the admissible short exact sequences.
+
splits in $  \mathfrak M $(
 +
cf. [[Split sequence|Split sequence]]). By means of the class $  {\mathcal E} $
 +
of admissible exact sequences, the class of $  {\mathcal E} $-
 +
projective (respectively, $  {\mathcal E} $-
 +
injective) objects is defined as the class of those objects $  P $(
 +
respectively, $  Q $)  
 +
for which the functor $  \mathop{\rm Hom} _ {\mathfrak A} ( P, -) $(
 +
respectively, $  \mathop{\rm Hom} _ {\mathfrak A} ( - , Q) $)  
 +
is exact on the admissible short exact sequences.
  
Any projective object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100015.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100016.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100017.png" />-projective, although this does not mean that in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100018.png" /> there are enough relative projective objects (i.e. that for any object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100019.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100020.png" />, an admissible epimorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100021.png" /> of a certain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100022.png" />-projective object of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100023.png" /> exists). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100024.png" /> contains enough <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100025.png" />-projective or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100026.png" />-injective objects, then the usual constructions of homological algebra make it possible to construct derived functors in this category, which are called relative derived functors.
+
Any projective object $  P $
 +
of $  \mathfrak A $
 +
is $  {\mathcal E} $-
 +
projective, although this does not mean that in $  \mathfrak A $
 +
there are enough relative projective objects (i.e. that for any object $  A $
 +
from $  \mathfrak A $,  
 +
an admissible epimorphism $  P \rightarrow A $
 +
of a certain $  {\mathcal E} $-
 +
projective object of $  \mathfrak A $
 +
exists). If $  \mathfrak A $
 +
contains enough $  {\mathcal E} $-
 +
projective or $  {\mathcal E} $-
 +
injective objects, then the usual constructions of homological algebra make it possible to construct derived functors in this category, which are called relative derived functors.
  
Examples. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100027.png" /> be the category of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100028.png" />-modules over an associative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100029.png" /> with a unit, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100030.png" /> be the category of Abelian groups and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100031.png" /> be the functor which  "forgets"  the module structure. In this case all exact sequences are admissible, and as a result the  "absolute"  (i.e. usual) homological algebra is obtained.
+
Examples. Let $  \mathfrak A $
 +
be the category of $  R $-
 +
modules over an associative ring $  R $
 +
with a unit, let $  \mathfrak M $
 +
be the category of Abelian groups and let $  \Delta : \mathfrak A \rightarrow \mathfrak M $
 +
be the functor which  "forgets"  the module structure. In this case all exact sequences are admissible, and as a result the  "absolute"  (i.e. usual) homological algebra is obtained.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100032.png" /> is a group, then every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100033.png" />-module is, in particular, an Abelian group. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100034.png" /> is an algebra over a commutative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100035.png" />, then every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100036.png" />-module is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100037.png" />-module. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100038.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100039.png" /> are rings and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100040.png" />, then every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100041.png" />-module is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100042.png" />-module. In all these cases there is a functor from one Abelian category into the other defining the relative derived functors.
+
If $  G $
 +
is a group, then every $  G $-
 +
module is, in particular, an Abelian group. If $  R $
 +
is an algebra over a commutative ring $  k $,  
 +
then every $  R $-
 +
module is a $  k $-
 +
module. If $  R $
 +
and $  S $
 +
are rings and $  R \supset S $,  
 +
then every $  R $-
 +
module is an $  S $-
 +
module. In all these cases there is a functor from one Abelian category into the other defining the relative derived functors.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. MacLane,  "Homology" , Springer  (1963)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J.C. Moore,  S. Eilenberg,  "Foundations of relative homological algebra" , Amer. Math. Soc.  (1965)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. MacLane,  "Homology" , Springer  (1963)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J.C. Moore,  S. Eilenberg,  "Foundations of relative homological algebra" , Amer. Math. Soc.  (1965)</TD></TR></table>

Latest revision as of 08:10, 6 June 2020


A homological algebra associated with a pair of Abelian categories $ ( \mathfrak A , \mathfrak M ) $ and a fixed functor $ \Delta : \mathfrak A \rightarrow \mathfrak M $( cf. Abelian category). The functor $ \Delta $ is taken to be additive, exact and faithful. A short exact sequence of objects of $ \mathfrak A $,

$$ 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 $$

is said to be admissible if the exact sequence

$$ 0 \rightarrow \Delta A \rightarrow \Delta B \rightarrow \Delta C \rightarrow 0 $$

splits in $ \mathfrak M $( cf. Split sequence). By means of the class $ {\mathcal E} $ of admissible exact sequences, the class of $ {\mathcal E} $- projective (respectively, $ {\mathcal E} $- injective) objects is defined as the class of those objects $ P $( respectively, $ Q $) for which the functor $ \mathop{\rm Hom} _ {\mathfrak A} ( P, -) $( respectively, $ \mathop{\rm Hom} _ {\mathfrak A} ( - , Q) $) is exact on the admissible short exact sequences.

Any projective object $ P $ of $ \mathfrak A $ is $ {\mathcal E} $- projective, although this does not mean that in $ \mathfrak A $ there are enough relative projective objects (i.e. that for any object $ A $ from $ \mathfrak A $, an admissible epimorphism $ P \rightarrow A $ of a certain $ {\mathcal E} $- projective object of $ \mathfrak A $ exists). If $ \mathfrak A $ contains enough $ {\mathcal E} $- projective or $ {\mathcal E} $- injective objects, then the usual constructions of homological algebra make it possible to construct derived functors in this category, which are called relative derived functors.

Examples. Let $ \mathfrak A $ be the category of $ R $- modules over an associative ring $ R $ with a unit, let $ \mathfrak M $ be the category of Abelian groups and let $ \Delta : \mathfrak A \rightarrow \mathfrak M $ be the functor which "forgets" the module structure. In this case all exact sequences are admissible, and as a result the "absolute" (i.e. usual) homological algebra is obtained.

If $ G $ is a group, then every $ G $- module is, in particular, an Abelian group. If $ R $ is an algebra over a commutative ring $ k $, then every $ R $- module is a $ k $- module. If $ R $ and $ S $ are rings and $ R \supset S $, then every $ R $- module is an $ S $- module. In all these cases there is a functor from one Abelian category into the other defining the relative derived functors.

References

[1] S. MacLane, "Homology" , Springer (1963)
[2] J.C. Moore, S. Eilenberg, "Foundations of relative homological algebra" , Amer. Math. Soc. (1965)
How to Cite This Entry:
Relative homological algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Relative_homological_algebra&oldid=15425
This article was adapted from an original article by V.E. GovorovA.V. Mikhalev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article