Namespaces
Variants
Actions

Difference between revisions of "Reinhardt domain"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
r0809701.png
 +
$#A+1 = 34 n = 0
 +
$#C+1 = 34 : ~/encyclopedia/old_files/data/R080/R.0800970 Reinhardt domain,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''multiple-circled domain''
 
''multiple-circled domain''
  
A domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r0809701.png" /> in the complex space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r0809702.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r0809703.png" />, with centre at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r0809704.png" />, with the following property: Together with any point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r0809705.png" />, the domain also contains the set
+
A domain $  D $
 +
in the complex space $  \mathbf C  ^ {n} $,  
 +
$  n \geq  1 $,  
 +
with centre at a point $  a = ( a _ {1} \dots a _ {n} ) \in \mathbf C  ^ {n} $,  
 +
with the following property: Together with any point $  z  ^ {0} = ( z _ {1}  ^ {0} \dots z _ {n}  ^ {0} ) \in D $,  
 +
the domain also contains the set
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r0809706.png" /></td> </tr></table>
+
$$
 +
\{ z = ( z _ {1} \dots z _ {n} ):
 +
| z _  \nu  - a _  \nu  | = | z _  \nu  ^ {0} - a _  \nu  |,\
 +
\nu = 1 \dots n \} .
 +
$$
  
A Reinhardt domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r0809707.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r0809708.png" /> is invariant under the transformations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r0809709.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r08097010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r08097011.png" />. The Reinhardt domains constitute a subclass of the Hartogs domains (cf. [[Hartogs domain|Hartogs domain]]) and a subclass of the circular domains, which are defined by the following condition: Together with any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r08097012.png" />, the domain contains the set
+
A Reinhardt domain $  D $
 +
with $  a = 0 $
 +
is invariant under the transformations $  \{ z  ^ {0} \} \rightarrow \{ z _  \nu  ^ {0} e ^ {i \theta _  \nu  } \} $,  
 +
$  0 \leq  \theta _  \nu  < 2 \pi $,  
 +
$  \nu = 1 \dots n $.  
 +
The Reinhardt domains constitute a subclass of the Hartogs domains (cf. [[Hartogs domain|Hartogs domain]]) and a subclass of the circular domains, which are defined by the following condition: Together with any $  z  ^ {0} \in D $,  
 +
the domain contains the set
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r08097013.png" /></td> </tr></table>
+
$$
 +
\{ {z = ( z _ {1} \dots z _ {n} ) } : {
 +
z = a + ( z  ^ {0} - a) e ^ {i \theta } ,\
 +
0 \leq  \theta < 2 \pi } \}
 +
,
 +
$$
  
i.e. all points of the circle with centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r08097014.png" /> and radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r08097015.png" /> that lie on the complex line through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r08097016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r08097017.png" />.
+
i.e. all points of the circle with centre $  a $
 +
and radius $  | z  ^ {0} - a | = ( \sum _ {\nu = 1 }  ^ {n} | z _  \nu  ^ {0} - a _  \nu  |  ^ {2} )  ^ {1/2} $
 +
that lie on the complex line through $  a $
 +
and $  z  ^ {0} $.
  
A Reinhardt domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r08097018.png" /> is called a complete Reinhardt domain if together with any point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r08097019.png" /> it also contains the polydisc
+
A Reinhardt domain $  D $
 +
is called a complete Reinhardt domain if together with any point $  z  ^ {0} \in D $
 +
it also contains the polydisc
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r08097020.png" /></td> </tr></table>
+
$$
 +
\{ {z = ( z _ {1} \dots z _ {n} ) } : {
 +
| z _  \nu  - a _  \nu  | \leq  | z _  \nu  ^ {0} - a _  \nu  |,\
 +
\nu = 1 \dots n } \}
 +
.
 +
$$
  
A complete Reinhardt domain is star-like with respect to its centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r08097021.png" /> (cf. [[Star-like domain|Star-like domain]]).
+
A complete Reinhardt domain is star-like with respect to its centre $  a $(
 +
cf. [[Star-like domain|Star-like domain]]).
  
Examples of complete Reinhardt domains are balls and polydiscs in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r08097022.png" />. A circular domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r08097023.png" /> is called a complete circular domain if together with any pont <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r08097024.png" /> it also contains the entire disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r08097025.png" />.
+
Examples of complete Reinhardt domains are balls and polydiscs in $  \mathbf C  ^ {n} $.  
 +
A circular domain $  D $
 +
is called a complete circular domain if together with any pont $  z  ^ {0} \in D $
 +
it also contains the entire disc $  \{ {z = a + ( z  ^ {0} - a) \zeta } : {| \zeta | \leq  1 } \} $.
  
A Reinhardt domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r08097026.png" /> is called logarithmically convex if the image <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r08097027.png" /> of the set
+
A Reinhardt domain $  D $
 +
is called logarithmically convex if the image $  \lambda ( D  ^ {*} ) $
 +
of the set
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r08097028.png" /></td> </tr></table>
+
$$
 +
D  ^ {*}  = \
 +
\{ {z= ( z _ {1} \dots z _ {n} ) \in D } : {
 +
z _ {1} \dots z _ {n} \neq 0 } \}
 +
$$
  
 
under the mapping
 
under the mapping
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r08097029.png" /></td> </tr></table>
+
$$
 +
\lambda : z  \rightarrow  \lambda ( z)  = \
 +
(  \mathop{\rm ln}  | z _ {1} | \dots  \mathop{\rm ln}  | z _ {n} | )
 +
$$
  
is a convex set in the real space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r08097030.png" />. An important property of logarithmically-convex Reinhardt domains is the following: Every such domain in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r08097031.png" /> is the interior of the set of points of absolute convergence (i.e. the domain of convergence) of some power series in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r08097032.png" />, and conversely: The domain of convergence of any power series in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r08097033.png" /> is a logarithmically-convex Reinhardt domain with centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080970/r08097034.png" />.
+
is a convex set in the real space $  \mathbf R  ^ {n} $.  
 +
An important property of logarithmically-convex Reinhardt domains is the following: Every such domain in $  \mathbf C  ^ {n} $
 +
is the interior of the set of points of absolute convergence (i.e. the domain of convergence) of some power series in $  z _ {1} - a _ {1} \dots z _ {n} - a _ {n} $,  
 +
and conversely: The domain of convergence of any power series in $  z _ {1} \dots z _ {n} $
 +
is a logarithmically-convex Reinhardt domain with centre $  a = 0 $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  V.S. Vladimirov,  "Methods of the theory of functions of many complex variables" , M.I.T.  (1966)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B.V. Shabat,  "Introduction of complex analysis" , '''1–2''' , Moscow  (1985)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  V.S. Vladimirov,  "Methods of the theory of functions of many complex variables" , M.I.T.  (1966)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B.V. Shabat,  "Introduction of complex analysis" , '''1–2''' , Moscow  (1985)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 08:10, 6 June 2020


multiple-circled domain

A domain $ D $ in the complex space $ \mathbf C ^ {n} $, $ n \geq 1 $, with centre at a point $ a = ( a _ {1} \dots a _ {n} ) \in \mathbf C ^ {n} $, with the following property: Together with any point $ z ^ {0} = ( z _ {1} ^ {0} \dots z _ {n} ^ {0} ) \in D $, the domain also contains the set

$$ \{ z = ( z _ {1} \dots z _ {n} ): | z _ \nu - a _ \nu | = | z _ \nu ^ {0} - a _ \nu |,\ \nu = 1 \dots n \} . $$

A Reinhardt domain $ D $ with $ a = 0 $ is invariant under the transformations $ \{ z ^ {0} \} \rightarrow \{ z _ \nu ^ {0} e ^ {i \theta _ \nu } \} $, $ 0 \leq \theta _ \nu < 2 \pi $, $ \nu = 1 \dots n $. The Reinhardt domains constitute a subclass of the Hartogs domains (cf. Hartogs domain) and a subclass of the circular domains, which are defined by the following condition: Together with any $ z ^ {0} \in D $, the domain contains the set

$$ \{ {z = ( z _ {1} \dots z _ {n} ) } : { z = a + ( z ^ {0} - a) e ^ {i \theta } ,\ 0 \leq \theta < 2 \pi } \} , $$

i.e. all points of the circle with centre $ a $ and radius $ | z ^ {0} - a | = ( \sum _ {\nu = 1 } ^ {n} | z _ \nu ^ {0} - a _ \nu | ^ {2} ) ^ {1/2} $ that lie on the complex line through $ a $ and $ z ^ {0} $.

A Reinhardt domain $ D $ is called a complete Reinhardt domain if together with any point $ z ^ {0} \in D $ it also contains the polydisc

$$ \{ {z = ( z _ {1} \dots z _ {n} ) } : { | z _ \nu - a _ \nu | \leq | z _ \nu ^ {0} - a _ \nu |,\ \nu = 1 \dots n } \} . $$

A complete Reinhardt domain is star-like with respect to its centre $ a $( cf. Star-like domain).

Examples of complete Reinhardt domains are balls and polydiscs in $ \mathbf C ^ {n} $. A circular domain $ D $ is called a complete circular domain if together with any pont $ z ^ {0} \in D $ it also contains the entire disc $ \{ {z = a + ( z ^ {0} - a) \zeta } : {| \zeta | \leq 1 } \} $.

A Reinhardt domain $ D $ is called logarithmically convex if the image $ \lambda ( D ^ {*} ) $ of the set

$$ D ^ {*} = \ \{ {z= ( z _ {1} \dots z _ {n} ) \in D } : { z _ {1} \dots z _ {n} \neq 0 } \} $$

under the mapping

$$ \lambda : z \rightarrow \lambda ( z) = \ ( \mathop{\rm ln} | z _ {1} | \dots \mathop{\rm ln} | z _ {n} | ) $$

is a convex set in the real space $ \mathbf R ^ {n} $. An important property of logarithmically-convex Reinhardt domains is the following: Every such domain in $ \mathbf C ^ {n} $ is the interior of the set of points of absolute convergence (i.e. the domain of convergence) of some power series in $ z _ {1} - a _ {1} \dots z _ {n} - a _ {n} $, and conversely: The domain of convergence of any power series in $ z _ {1} \dots z _ {n} $ is a logarithmically-convex Reinhardt domain with centre $ a = 0 $.

References

[1] V.S. Vladimirov, "Methods of the theory of functions of many complex variables" , M.I.T. (1966) (Translated from Russian)
[2] B.V. Shabat, "Introduction of complex analysis" , 1–2 , Moscow (1985) (In Russian)

Comments

The final paragraph reduces to: A Reinhardt domain is a domain of holomorphy if and only if it is logarithmically convex.

References

[a1] L. Hörmander, "An introduction to complex analysis in several variables" , North-Holland (1973)
[a2] R.M. Range, "Holomorphic functions and integral representation in several complex variables" , Springer (1986)
How to Cite This Entry:
Reinhardt domain. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Reinhardt_domain&oldid=16774
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article