Difference between revisions of "Regulated rewriting"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | r1100601.png | ||
+ | $#A+1 = 46 n = 0 | ||
+ | $#C+1 = 46 : ~/encyclopedia/old_files/data/R110/R.1100060 Regulated rewriting | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
An important branch of [[Formal language|formal language]] theory, starting from the observation that most natural and artificial languages of interest are non-context-free (cf. [[Grammar, context-free|Grammar, context-free]]). By imposing certain restrictions on the derivation in context-free grammars, the generative power is increased, still preserving some of the attractive features of context-free grammars. | An important branch of [[Formal language|formal language]] theory, starting from the observation that most natural and artificial languages of interest are non-context-free (cf. [[Grammar, context-free|Grammar, context-free]]). By imposing certain restrictions on the derivation in context-free grammars, the generative power is increased, still preserving some of the attractive features of context-free grammars. | ||
Line 6: | Line 18: | ||
A programmed grammar (introduced in [[#References|[a3]]]) is a construct | A programmed grammar (introduced in [[#References|[a3]]]) is a construct | ||
− | + | $$ | |
+ | G = ( N,T,S,P ) , | ||
+ | $$ | ||
− | where | + | where $ N $, |
+ | $ T $ | ||
+ | are disjoint alphabets (the non-terminal and the terminal alphabet), $ S \in N $( | ||
+ | axiom), and $ P $ | ||
+ | is a finite set of quadruples $ ( r : A \rightarrow {x, \sigma ( r ) , \varphi ( r ) } ) $; | ||
+ | $ A \rightarrow x $ | ||
+ | is a context-free rule over $ N \cup T $, | ||
+ | $ r $ | ||
+ | is the label of the rule, $ \sigma ( r ) $ | ||
+ | and $ \varphi ( r ) $ | ||
+ | are sets of labels of rules in $ P $( | ||
+ | $ \sigma ( r ) $ | ||
+ | is the success field and $ \varphi ( r ) $ | ||
+ | is the failure field). Let $ { \mathop{\rm Lab} } $ | ||
+ | be the set of all labels of rules in $ P $. | ||
+ | For $ ( r,w ) , ( r ^ \prime ,w ^ \prime ) \in { \mathop{\rm Lab} } \times ( N \cup T ) ^ {*} $ | ||
+ | one writes $ ( r,w ) \Rightarrow ( r ^ \prime ,w ^ \prime ) $ | ||
+ | if one of the following two cases holds: | ||
− | 1) | + | 1) $ w = uAv $ |
+ | and $ w ^ \prime = uxv $, | ||
+ | for $ ( r : A \rightarrow {x, \sigma ( r ) , \varphi ( r ) } ) \in P $, | ||
+ | $ u,v \in ( N \cup T ) ^ {*} $, | ||
+ | and $ r ^ \prime \in \sigma ( r ) $; | ||
− | 2) | + | 2) $ w $ |
+ | does not contain the symbol $ A $, | ||
+ | for $ ( r : A \rightarrow {x, \sigma ( r ) , \varphi ( r ) } ) \in P $ | ||
+ | and $ w = w ^ \prime $, | ||
+ | $ r ^ \prime \in \varphi ( r ) $. | ||
+ | (Note the way of controlling the sequencing of rules application by means of the mappings $ \sigma $ | ||
+ | and $ \varphi $ | ||
+ | from $ { \mathop{\rm Lab} } $ | ||
+ | to the power set of $ { \mathop{\rm Lab} } $.) | ||
+ | The language generated by $ G $ | ||
+ | is | ||
− | + | $$ | |
+ | L ( G ) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = | ||
+ | \left \{ {w \in T ^ {*} } : {( r,S ) \Rightarrow ^ {*} ( r ^ \prime ,w ) \textrm{ for some } r,r ^ \prime \in { \mathop{\rm Lab} } } \right \} , | ||
+ | $$ | ||
− | where | + | where $ \Rightarrow ^ {*} $ |
+ | is the reflexive and transitive closure of the relation $ \Rightarrow $. | ||
+ | Let $ { \mathop{\rm PR} } _ {\textrm{ ac } } ^ \lambda $ | ||
+ | be the family of languages of this form; when $ \lambda $- | ||
+ | rules are not allowed, one writes $ { \mathop{\rm PR} } _ {\textrm{ ac } } $. | ||
+ | When $ \varphi ( r ) = \emptyset $ | ||
+ | for all rules in $ P $, | ||
+ | one says that the grammar is without appearance checking; the corresponding families of languages are denoted by $ { \mathop{\rm PR} } ^ \lambda $, | ||
+ | PR. Denote by CF, CS, and RE the families of context-free, context-sensitive, and recursively enumerable languages, respectively. Then: | ||
− | 1) | + | 1) $ { \mathop{\rm CF} } \subset { \mathop{\rm PR} } \subset { \mathop{\rm PR} } ^ \lambda \subset { \mathop{\rm RE} } $, |
+ | $ { \mathop{\rm PR} } \subset { \mathop{\rm PR} } _ {\textrm{ ac } } \subset { \mathop{\rm CS} } \subset { \mathop{\rm PR} } _ {\textrm{ ac } } ^ \lambda = { \mathop{\rm RE} } $; | ||
− | 2) | + | 2) $ { \mathop{\rm PR} } _ {\textrm{ ac } } $ |
+ | is an [[Abstract family of languages|abstract family of languages]] (cf. also [[Trio|Trio]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Dassow, Gh. Păun, "Regulated rewriting in formal language theory" , Springer (1989)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Dassow, Gh. Păun, A. Salomaa, "Regulated rewriting" G. Rozenberg (ed.) A. Salomaa (ed.) , ''Handbook of Formal Languages'' , Springer (1997)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> D. Rosenkrantz, "Programmed grammars and classes of formal languages" ''J. ACM'' , '''16''' (1969) pp. 107 –131</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Dassow, Gh. Păun, "Regulated rewriting in formal language theory" , Springer (1989)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Dassow, Gh. Păun, A. Salomaa, "Regulated rewriting" G. Rozenberg (ed.) A. Salomaa (ed.) , ''Handbook of Formal Languages'' , Springer (1997)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> D. Rosenkrantz, "Programmed grammars and classes of formal languages" ''J. ACM'' , '''16''' (1969) pp. 107 –131</TD></TR></table> |
Latest revision as of 08:10, 6 June 2020
An important branch of formal language theory, starting from the observation that most natural and artificial languages of interest are non-context-free (cf. Grammar, context-free). By imposing certain restrictions on the derivation in context-free grammars, the generative power is increased, still preserving some of the attractive features of context-free grammars.
There are some dozens of regulating mechanisms of this type: matrix, programmed, random context, regularly controlled, periodically time variant, indexed, state, valence, parallel grammars, grammars controlled by bicoloured digraphs, etc. See [a1] for details; recent information can be found in [a2].
Example.
A programmed grammar (introduced in [a3]) is a construct
$$ G = ( N,T,S,P ) , $$
where $ N $, $ T $ are disjoint alphabets (the non-terminal and the terminal alphabet), $ S \in N $( axiom), and $ P $ is a finite set of quadruples $ ( r : A \rightarrow {x, \sigma ( r ) , \varphi ( r ) } ) $; $ A \rightarrow x $ is a context-free rule over $ N \cup T $, $ r $ is the label of the rule, $ \sigma ( r ) $ and $ \varphi ( r ) $ are sets of labels of rules in $ P $( $ \sigma ( r ) $ is the success field and $ \varphi ( r ) $ is the failure field). Let $ { \mathop{\rm Lab} } $ be the set of all labels of rules in $ P $. For $ ( r,w ) , ( r ^ \prime ,w ^ \prime ) \in { \mathop{\rm Lab} } \times ( N \cup T ) ^ {*} $ one writes $ ( r,w ) \Rightarrow ( r ^ \prime ,w ^ \prime ) $ if one of the following two cases holds:
1) $ w = uAv $ and $ w ^ \prime = uxv $, for $ ( r : A \rightarrow {x, \sigma ( r ) , \varphi ( r ) } ) \in P $, $ u,v \in ( N \cup T ) ^ {*} $, and $ r ^ \prime \in \sigma ( r ) $;
2) $ w $ does not contain the symbol $ A $, for $ ( r : A \rightarrow {x, \sigma ( r ) , \varphi ( r ) } ) \in P $ and $ w = w ^ \prime $, $ r ^ \prime \in \varphi ( r ) $. (Note the way of controlling the sequencing of rules application by means of the mappings $ \sigma $ and $ \varphi $ from $ { \mathop{\rm Lab} } $ to the power set of $ { \mathop{\rm Lab} } $.) The language generated by $ G $ is
$$ L ( G ) = $$
$$ = \left \{ {w \in T ^ {*} } : {( r,S ) \Rightarrow ^ {*} ( r ^ \prime ,w ) \textrm{ for some } r,r ^ \prime \in { \mathop{\rm Lab} } } \right \} , $$
where $ \Rightarrow ^ {*} $ is the reflexive and transitive closure of the relation $ \Rightarrow $. Let $ { \mathop{\rm PR} } _ {\textrm{ ac } } ^ \lambda $ be the family of languages of this form; when $ \lambda $- rules are not allowed, one writes $ { \mathop{\rm PR} } _ {\textrm{ ac } } $. When $ \varphi ( r ) = \emptyset $ for all rules in $ P $, one says that the grammar is without appearance checking; the corresponding families of languages are denoted by $ { \mathop{\rm PR} } ^ \lambda $, PR. Denote by CF, CS, and RE the families of context-free, context-sensitive, and recursively enumerable languages, respectively. Then:
1) $ { \mathop{\rm CF} } \subset { \mathop{\rm PR} } \subset { \mathop{\rm PR} } ^ \lambda \subset { \mathop{\rm RE} } $, $ { \mathop{\rm PR} } \subset { \mathop{\rm PR} } _ {\textrm{ ac } } \subset { \mathop{\rm CS} } \subset { \mathop{\rm PR} } _ {\textrm{ ac } } ^ \lambda = { \mathop{\rm RE} } $;
2) $ { \mathop{\rm PR} } _ {\textrm{ ac } } $ is an abstract family of languages (cf. also Trio).
References
[a1] | J. Dassow, Gh. Păun, "Regulated rewriting in formal language theory" , Springer (1989) |
[a2] | J. Dassow, Gh. Păun, A. Salomaa, "Regulated rewriting" G. Rozenberg (ed.) A. Salomaa (ed.) , Handbook of Formal Languages , Springer (1997) |
[a3] | D. Rosenkrantz, "Programmed grammars and classes of formal languages" J. ACM , 16 (1969) pp. 107 –131 |
Regulated rewriting. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Regulated_rewriting&oldid=15163