Namespaces
Variants
Actions

Difference between revisions of "Regular automorphism"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
An [[Automorphism|automorphism]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080670/r0806701.png" /> of a [[Group|group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080670/r0806702.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080670/r0806703.png" /> for every non-identity element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080670/r0806704.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080670/r0806705.png" /> (that is, the image of every non-identity element of a group under a regular automorphism must be different from that element). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080670/r0806706.png" /> is a regular automorphism of a finite group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080670/r0806707.png" />, then for every prime <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080670/r0806708.png" /> dividing the order of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080670/r0806709.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080670/r08067010.png" /> leaves invariant (that is, maps to itself) a unique Sylow <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080670/r08067011.png" />-subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080670/r08067012.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080670/r08067013.png" />, and any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080670/r08067014.png" />-subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080670/r08067015.png" /> invariant under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080670/r08067016.png" /> is contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080670/r08067017.png" />. A finite group that admits a regular automorphism of prime order is nilpotent (cf. [[Nilpotent group|Nilpotent group]]) [[#References|[2]]]. However, there are solvable (cf. [[Solvable group|Solvable group]]) non-nilpotent groups admitting a regular automorphism of composite order.
+
<!--
 +
r0806701.png
 +
$#A+1 = 17 n = 0
 +
$#C+1 = 17 : ~/encyclopedia/old_files/data/R080/R.0800670 Regular automorphism
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
An [[Automorphism|automorphism]]  $  \phi $
 +
of a [[Group|group]] $  G $
 +
such that $  g \phi \neq g $
 +
for every non-identity element $  g $
 +
of $  G $(
 +
that is, the image of every non-identity element of a group under a regular automorphism must be different from that element). If $  \phi $
 +
is a regular automorphism of a finite group $  G $,  
 +
then for every prime $  p $
 +
dividing the order of $  G $,  
 +
$  \phi $
 +
leaves invariant (that is, maps to itself) a unique Sylow $  p $-
 +
subgroup $  S _ {p} $
 +
of $  G $,  
 +
and any $  p $-
 +
subgroup of $  G $
 +
invariant under $  \phi $
 +
is contained in $  S _ {p} $.  
 +
A finite group that admits a regular automorphism of prime order is nilpotent (cf. [[Nilpotent group|Nilpotent group]]) [[#References|[2]]]. However, there are solvable (cf. [[Solvable group|Solvable group]]) non-nilpotent groups admitting a regular automorphism of composite order.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  D. Gorenstein,  "Finite groups" , Chelsea, reprint  (1980)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J.G. Thompson,  "Finite groups with fixed-point-free automorphisms of prime order"  ''Proc. Nat. Acad. Sci.'' , '''45'''  (1959)  pp. 578–581</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  D. Gorenstein,  "Finite groups" , Chelsea, reprint  (1980)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J.G. Thompson,  "Finite groups with fixed-point-free automorphisms of prime order"  ''Proc. Nat. Acad. Sci.'' , '''45'''  (1959)  pp. 578–581</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
A regular automorphism is also called a fixed-point-free automorphism.
 
A regular automorphism is also called a fixed-point-free automorphism.

Latest revision as of 08:10, 6 June 2020


An automorphism $ \phi $ of a group $ G $ such that $ g \phi \neq g $ for every non-identity element $ g $ of $ G $( that is, the image of every non-identity element of a group under a regular automorphism must be different from that element). If $ \phi $ is a regular automorphism of a finite group $ G $, then for every prime $ p $ dividing the order of $ G $, $ \phi $ leaves invariant (that is, maps to itself) a unique Sylow $ p $- subgroup $ S _ {p} $ of $ G $, and any $ p $- subgroup of $ G $ invariant under $ \phi $ is contained in $ S _ {p} $. A finite group that admits a regular automorphism of prime order is nilpotent (cf. Nilpotent group) [2]. However, there are solvable (cf. Solvable group) non-nilpotent groups admitting a regular automorphism of composite order.

References

[1] D. Gorenstein, "Finite groups" , Chelsea, reprint (1980)
[2] J.G. Thompson, "Finite groups with fixed-point-free automorphisms of prime order" Proc. Nat. Acad. Sci. , 45 (1959) pp. 578–581

Comments

A regular automorphism is also called a fixed-point-free automorphism.

How to Cite This Entry:
Regular automorphism. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Regular_automorphism&oldid=17880
This article was adapted from an original article by N.N. Vil'yams (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article