Difference between revisions of "Recursive realizability"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | r0803101.png | ||
+ | $#A+1 = 64 n = 0 | ||
+ | $#C+1 = 64 : ~/encyclopedia/old_files/data/R080/R.0800310 Recursive realizability | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A more precise definition of the intuitionistic semantics of arithmetical formulas, based on the concept of a [[Partial recursive function|partial recursive function]] as proposed by S.C. Kleene (see [[#References|[1]]], [[#References|[2]]]). For every closed arithmetical formula $ F $, | |
+ | a relation "the natural number e realizes the formula F" is defined; it is denoted by $ erF $. | ||
+ | The relation $ erF $ | ||
+ | is defined inductively according to the structure of the formula $ F $. | ||
− | + | 1) If $ F $ | |
+ | is an atomic formula without free variables, i.e. $ F $ | ||
+ | is of the form $ s= t $ | ||
+ | where $ s $ | ||
+ | and $ t $ | ||
+ | are constant terms, then $ erF $ | ||
+ | if and only if $ e= 0 $ | ||
+ | and the values of the terms $ s $ | ||
+ | and $ t $ | ||
+ | coincide. | ||
− | + | Let $ A $ | |
+ | and $ B $ | ||
+ | be formulas without free variables. | ||
− | + | 2) $ er( A \& B) $ | |
+ | if and only if $ e = 2 ^ {a} \cdot 3 ^ {b} $, | ||
+ | where $ arA $, | ||
+ | $ brB $. | ||
− | + | 3) $ er( A \lor B) $ | |
+ | if and only if $ e = 2 ^ {0} \cdot 3 ^ {a} $ | ||
+ | and $ arA $, | ||
+ | or $ e = 2 ^ {1} \cdot 3 ^ {b} $ | ||
+ | and $ brB $. | ||
− | + | 4) $ er( A \supset B) $ | |
+ | if and only if $ e $ | ||
+ | is the Gödel number of a unary partial recursive function $ \phi $ | ||
+ | such that for any natural number $ a $, | ||
+ | $ arA $ | ||
+ | implies that $ \phi $ | ||
+ | is defined at $ a $ | ||
+ | and $ \phi ( a) rB $. | ||
− | + | 5) $ er( \neg A) $ | |
+ | if and only if $ er( A \supset 1= 0) $. | ||
− | + | Let $ A( x) $ | |
+ | be a formula without free variables other than $ x $; | ||
+ | if $ n $ | ||
+ | is a natural number, then $ \overline{n}\; $ | ||
+ | is a term which denotes the number $ n $ | ||
+ | in formal arithmetic. | ||
− | + | 6) $ er( \exists xA( x)) $ | |
+ | if and only if $ e = 2 ^ {n} \cdot 3 ^ {a} $ | ||
+ | and $ arA( \overline{n}\; ) $. | ||
− | + | 7) $ er( \forall xA( x)) $ | |
+ | if and only if $ e $ | ||
+ | is the Gödel number of a [[Recursive function|recursive function]] $ f $ | ||
+ | such that for any natural number $ n $ | ||
+ | the number $ f( n) $ | ||
+ | realizes $ A( \overline{n}\; ) $. | ||
− | + | A closed formula $ F $ | |
+ | is called realizable if there is a number $ e $ | ||
+ | which realizes $ F $. | ||
+ | A formula $ A( y _ {1} \dots y _ {m} ) $ | ||
+ | containing the free variables $ y _ {1} \dots y _ {m} $ | ||
+ | can be regarded as a predicate in $ y _ {1} \dots y _ {m} $( | ||
+ | "the formula Ay1…ym is realizable" ). If a formula $ F $ | ||
+ | is derivable from realizable formulas in [[Intuitionistic arithmetic|intuitionistic arithmetic]], then $ F $ | ||
+ | is realizable (see [[#References|[3]]]). In particular, every formula which can be proved in intuitionistic arithmetic is realizable. A formula $ A( x) $ | ||
+ | can be given for which the formula $ \forall x ( A( x) \lor \neg A( x)) $ | ||
+ | is not realizable. Accordingly, in this case the formula $ \neg \forall x( A( x) \lor \neg A( x)) $ | ||
+ | is realizable although it is classically false. | ||
− | + | Every predicate formula $ \mathfrak U $ | |
+ | which is provable in intuitionistic predicate calculus has the property that each arithmetical formula obtained from $ \mathfrak U $ | ||
+ | by substitution is realizable. Predicate formulas possessing this property are called realizable. It has been shown [[#References|[4]]] that the propositional formula: | ||
+ | |||
+ | $$ | ||
+ | (( \neg \neg D \supset D) \supset ( \neg \neg D \lor \neg D)) \supset ( \neg \neg D \lor | ||
+ | \neg D), | ||
+ | $$ | ||
+ | |||
+ | where $ D $ | ||
+ | denotes the formula $ \neg p \lor \neg q $, | ||
+ | is realizable but cannot be derived in [[Intuitionistic propositional calculus|intuitionistic propositional calculus]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.C. Kleene, "On the interpretation of intuitionistic number theory" ''J. Symbolic Logic'' , '''10''' (1945) pp. 109–124</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.C. Kleene, "Introduction to metamathematics" , North-Holland (1951)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D. Nelson, "Recursive functions and intuitionistic number theory" ''Trans. Amer. Math. Soc.'' , '''61''' (1947) pp. 307–368</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> G.F. Rose, "Propositional calculus and realizability" ''Trans. Amer. Math. Soc.'' , '''75''' (1953) pp. 1–19</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> P.S. Novikov, "Constructive mathematical logic from a classical point of view" , Moscow (1977) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.C. Kleene, "On the interpretation of intuitionistic number theory" ''J. Symbolic Logic'' , '''10''' (1945) pp. 109–124</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.C. Kleene, "Introduction to metamathematics" , North-Holland (1951)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D. Nelson, "Recursive functions and intuitionistic number theory" ''Trans. Amer. Math. Soc.'' , '''61''' (1947) pp. 307–368</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> G.F. Rose, "Propositional calculus and realizability" ''Trans. Amer. Math. Soc.'' , '''75''' (1953) pp. 1–19</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> P.S. Novikov, "Constructive mathematical logic from a classical point of view" , Moscow (1977) (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M.J. Beeson, "Foundations of constructive mathematics" , Springer (1985)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> D. Mumford, "Abelian varieties" , Oxford Univ. Press (1974)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M.J. Beeson, "Foundations of constructive mathematics" , Springer (1985)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> D. Mumford, "Abelian varieties" , Oxford Univ. Press (1974)</TD></TR></table> |
Latest revision as of 08:10, 6 June 2020
A more precise definition of the intuitionistic semantics of arithmetical formulas, based on the concept of a partial recursive function as proposed by S.C. Kleene (see [1], [2]). For every closed arithmetical formula $ F $,
a relation "the natural number e realizes the formula F" is defined; it is denoted by $ erF $.
The relation $ erF $
is defined inductively according to the structure of the formula $ F $.
1) If $ F $ is an atomic formula without free variables, i.e. $ F $ is of the form $ s= t $ where $ s $ and $ t $ are constant terms, then $ erF $ if and only if $ e= 0 $ and the values of the terms $ s $ and $ t $ coincide.
Let $ A $ and $ B $ be formulas without free variables.
2) $ er( A \& B) $ if and only if $ e = 2 ^ {a} \cdot 3 ^ {b} $, where $ arA $, $ brB $.
3) $ er( A \lor B) $ if and only if $ e = 2 ^ {0} \cdot 3 ^ {a} $ and $ arA $, or $ e = 2 ^ {1} \cdot 3 ^ {b} $ and $ brB $.
4) $ er( A \supset B) $ if and only if $ e $ is the Gödel number of a unary partial recursive function $ \phi $ such that for any natural number $ a $, $ arA $ implies that $ \phi $ is defined at $ a $ and $ \phi ( a) rB $.
5) $ er( \neg A) $ if and only if $ er( A \supset 1= 0) $.
Let $ A( x) $ be a formula without free variables other than $ x $; if $ n $ is a natural number, then $ \overline{n}\; $ is a term which denotes the number $ n $ in formal arithmetic.
6) $ er( \exists xA( x)) $ if and only if $ e = 2 ^ {n} \cdot 3 ^ {a} $ and $ arA( \overline{n}\; ) $.
7) $ er( \forall xA( x)) $ if and only if $ e $ is the Gödel number of a recursive function $ f $ such that for any natural number $ n $ the number $ f( n) $ realizes $ A( \overline{n}\; ) $.
A closed formula $ F $ is called realizable if there is a number $ e $ which realizes $ F $. A formula $ A( y _ {1} \dots y _ {m} ) $ containing the free variables $ y _ {1} \dots y _ {m} $ can be regarded as a predicate in $ y _ {1} \dots y _ {m} $( "the formula Ay1…ym is realizable" ). If a formula $ F $ is derivable from realizable formulas in intuitionistic arithmetic, then $ F $ is realizable (see [3]). In particular, every formula which can be proved in intuitionistic arithmetic is realizable. A formula $ A( x) $ can be given for which the formula $ \forall x ( A( x) \lor \neg A( x)) $ is not realizable. Accordingly, in this case the formula $ \neg \forall x( A( x) \lor \neg A( x)) $ is realizable although it is classically false.
Every predicate formula $ \mathfrak U $ which is provable in intuitionistic predicate calculus has the property that each arithmetical formula obtained from $ \mathfrak U $ by substitution is realizable. Predicate formulas possessing this property are called realizable. It has been shown [4] that the propositional formula:
$$ (( \neg \neg D \supset D) \supset ( \neg \neg D \lor \neg D)) \supset ( \neg \neg D \lor \neg D), $$
where $ D $ denotes the formula $ \neg p \lor \neg q $, is realizable but cannot be derived in intuitionistic propositional calculus.
References
[1] | S.C. Kleene, "On the interpretation of intuitionistic number theory" J. Symbolic Logic , 10 (1945) pp. 109–124 |
[2] | S.C. Kleene, "Introduction to metamathematics" , North-Holland (1951) |
[3] | D. Nelson, "Recursive functions and intuitionistic number theory" Trans. Amer. Math. Soc. , 61 (1947) pp. 307–368 |
[4] | G.F. Rose, "Propositional calculus and realizability" Trans. Amer. Math. Soc. , 75 (1953) pp. 1–19 |
[5] | P.S. Novikov, "Constructive mathematical logic from a classical point of view" , Moscow (1977) (In Russian) |
Comments
References
[a1] | M.J. Beeson, "Foundations of constructive mathematics" , Springer (1985) |
[a2] | D. Mumford, "Abelian varieties" , Oxford Univ. Press (1974) |
Recursive realizability. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Recursive_realizability&oldid=18604