Difference between revisions of "Reciprocity laws"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | r0800901.png | ||
| + | $#A+1 = 64 n = 0 | ||
| + | $#C+1 = 64 : ~/encyclopedia/old_files/data/R080/R.0800090 Reciprocity laws | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
A number of statements expressing relations between power-residue symbols or norm-residue symbols (cf. [[Power residue|Power residue]]; [[Norm-residue symbol|Norm-residue symbol]]). | A number of statements expressing relations between power-residue symbols or norm-residue symbols (cf. [[Power residue|Power residue]]; [[Norm-residue symbol|Norm-residue symbol]]). | ||
| − | The simplest manifestation of reciprocity laws is the following fact, which was already known to P. Fermat. The only prime divisors of the numbers | + | The simplest manifestation of reciprocity laws is the following fact, which was already known to P. Fermat. The only prime divisors of the numbers $ x ^ {2} + 1 $ |
| + | are $ 2 $ | ||
| + | and primes which are terms of the arithmetical series $ 1 + 4k $. | ||
| + | In other words, the identity | ||
| − | + | $$ | |
| + | x ^ {2} + 1 \equiv 0 ( \mathop{\rm mod} p) , | ||
| + | $$ | ||
| − | where | + | where $ p > 2 $ |
| + | is a prime, is solvable if and only if $ p \equiv 1 $ | ||
| + | $ ( \mathop{\rm mod} 4) $. | ||
| + | This assertion may be expressed with the aid of the quadratic-residue symbol ([[Legendre symbol|Legendre symbol]]) $ \left ( | ||
| + | \frac{a}{p} | ||
| + | \right ) $ | ||
| + | as follows: | ||
| − | + | $$ | |
| + | \left ( - | ||
| + | \frac{1}{p} | ||
| + | \right ) = (- 1) ^ {( p- 1) / {2 } } . | ||
| + | $$ | ||
In the more general case, the problem of solvability of the congruence | In the more general case, the problem of solvability of the congruence | ||
| − | + | $$ \tag{* } | |
| + | x ^ {2} \equiv a ( \mathop{\rm mod} p) | ||
| + | $$ | ||
is solved by the [[Gauss reciprocity law|Gauss reciprocity law]]: | is solved by the [[Gauss reciprocity law|Gauss reciprocity law]]: | ||
| − | + | $$ | |
| + | \left ( { | ||
| + | \frac{p}{q} | ||
| + | } \right ) \left ( { | ||
| + | \frac{q}{p} | ||
| + | } \right ) = \ | ||
| + | (- 1) ^ {( p- 1) / 2 \cdot ( q- 1) / 2 } , | ||
| + | $$ | ||
| − | where | + | where $ p $ |
| + | and $ q $ | ||
| + | are different odd primes, and by the following two complements: | ||
| − | + | $$ | |
| + | \left ( {- | ||
| + | \frac{1}{p} | ||
| + | } \right ) = \ | ||
| + | (- 1) ^ {( p- 2) / {2 } } \ \ | ||
| + | \textrm{ and } \ \left ( { | ||
| + | \frac{2}{p} | ||
| + | } \right ) = \ | ||
| + | (- 1) ^ {( p ^ {2} - 1) / {8 } } . | ||
| + | $$ | ||
| − | These relations for the Legendre symbol show that the prime numbers | + | These relations for the Legendre symbol show that the prime numbers $ p $ |
| + | for which (*) is solvable for a given non-square $ a $ | ||
| + | are contained in exactly one-half of the residue classes modulo $ 4 | a | $. | ||
| − | C.F. Gauss recognized the great importance of this reciprocity law and gave several proofs of it, based on completely different concepts [[#References|[1]]]. It follows from Gauss' reciprocity law and from its further generalization (the reciprocity law for the [[Jacobi symbol|Jacobi symbol]]) that, in particular, the decomposition of a prime number | + | C.F. Gauss recognized the great importance of this reciprocity law and gave several proofs of it, based on completely different concepts [[#References|[1]]]. It follows from Gauss' reciprocity law and from its further generalization (the reciprocity law for the [[Jacobi symbol|Jacobi symbol]]) that, in particular, the decomposition of a prime number $ p $ |
| + | in a quadratic extension $ \mathbf Q ( \sqrt d ) $ | ||
| + | of the field of rational numbers $ \mathbf Q $( | ||
| + | cf. [[Quadratic field|Quadratic field]]) is determined by the residue class of $ p $ | ||
| + | modulo $ 4 | d | $. | ||
Gauss' reciprocity law has been generalized to congruences of the form | Gauss' reciprocity law has been generalized to congruences of the form | ||
| − | + | $$ | |
| + | x ^ {n} \equiv a ( \mathop{\rm mod} p),\ \ | ||
| + | n > 2. | ||
| + | $$ | ||
| − | However, this involves a transition from the arithmetic of the rational integers to the arithmetic of the integers of an extension | + | However, this involves a transition from the arithmetic of the rational integers to the arithmetic of the integers of an extension $ K $ |
| + | of finite degree of the field of rational numbers. Also, in generalizing the reciprocity law to $ n $- | ||
| + | th power residues, the extension must be assumed to contain a primitive $ n $- | ||
| + | th root of unity $ \zeta $. | ||
| + | Under this assumption, prime divisors $ \mathfrak P $ | ||
| + | of $ K $ | ||
| + | which are not divisors of $ n $ | ||
| + | satisfy the congruence | ||
| − | + | $$ | |
| + | N _ {\mathfrak P} \equiv 1 ( \mathop{\rm mod} n), | ||
| + | $$ | ||
| − | where | + | where $ N _ {\mathfrak P} $ |
| + | is the norm of the divisor $ \mathfrak P $, | ||
| + | equal to the number of residue classes of the maximal order of this field modulo $ \mathfrak P $. | ||
| + | The analogue of the Legendre symbol is defined by the congruence | ||
| − | + | $$ | |
| + | \left ( { | ||
| + | \frac{a}{\mathfrak P} | ||
| + | } \right ) = \ | ||
| + | \zeta ^ {k} \equiv \ | ||
| + | a ^ {( N _ {\mathfrak P} - 1) / {n } } \ | ||
| + | ( \mathop{\rm mod} \mathfrak P ). | ||
| + | $$ | ||
| − | The power-residue symbol | + | The power-residue symbol $ \left ( |
| + | \frac{a}{b} | ||
| + | \right ) $ | ||
| + | for a pair of integers $ a $ | ||
| + | and $ b $, | ||
| + | analogous to the Jacobi symbol, is defined by the formula | ||
| − | + | $$ | |
| + | \left ( { | ||
| + | \frac{a}{b} | ||
| + | } \right ) = \ | ||
| + | \prod \left ( { | ||
| + | \frac{a}{\mathfrak P _ {i} } | ||
| + | } \right ) ^ {m} _ {i} , | ||
| + | $$ | ||
| − | if | + | if $ ( b) = \prod \mathfrak P _ {i} ^ {m _ {i} } $ |
| + | is the decomposition of the principal divisor $ ( b) $ | ||
| + | into prime factors and $ b $ | ||
| + | and $ an $ | ||
| + | are relatively prime. | ||
| − | The reciprocity law for | + | The reciprocity law for $ n = 4 $ |
| + | in the field $ \mathbf Q ( i) $ | ||
| + | was established by Gauss [[#References|[2]]], while that for $ n = 3 $ | ||
| + | in the field $ \mathbf Q ( e ^ {2 \pi i / 3 } ) $ | ||
| + | was established by G. Eisenstein [[#References|[3]]]. E. Kummer [[#References|[4]]] established the general reciprocity law for the power-residue symbol in the field $ \mathbf Q ( e ^ {2 \pi i / n } ) $, | ||
| + | where $ n $ | ||
| + | is a prime. Kummer's formula for a [[Regular prime number|regular prime number]] $ n $ | ||
| + | has the form | ||
| − | + | $$ | |
| + | \left ( { | ||
| + | \frac{a}{b} | ||
| + | } \right ) \left ( { | ||
| + | \frac{b}{a} | ||
| + | } \right ) ^ {-} 1 = \ | ||
| + | \zeta ^ {l ^ {1} ( a) l ^ {n- 1 } | ||
| + | ( b) - l ^ {2} ( a) l ^ {n- 2 } ( b) + \dots - l ^ {n- 1 } ( a) l ^ {1} ( b) } , | ||
| + | $$ | ||
| − | where | + | where $ a, b $ |
| + | are integers in the field $ \mathbf Q ( e ^ {2 \pi i / n } ) $, | ||
| − | + | $$ | |
| + | a \equiv b \equiv 1 | ||
| + | ( \mathop{\rm mod} ( \zeta - 1)), | ||
| + | $$ | ||
| − | + | $$ | |
| + | l ^ {i} ( a) = \left [ | ||
| + | \frac{d ^ {i} \mathop{\rm log} f( e ^ {u} ) }{du ^ {i} } | ||
| + | \right ] _ {u=} 0 , | ||
| + | $$ | ||
| − | and | + | and $ f( t) $ |
| + | is a polynomial of degree $ n - 1 $ | ||
| + | such that | ||
| − | + | $$ | |
| + | a = f ( \zeta ),\ f ( 1) = 1. | ||
| + | $$ | ||
The next stage in the study of general reciprocity laws is represented by the work of D. Hilbert [[#References|[5]]], [[#References|[6]]], who cleared up their local aspect. He established, in certain cases, reciprocity laws in the form of a product formula for his norm-residue symbol: | The next stage in the study of general reciprocity laws is represented by the work of D. Hilbert [[#References|[5]]], [[#References|[6]]], who cleared up their local aspect. He established, in certain cases, reciprocity laws in the form of a product formula for his norm-residue symbol: | ||
| − | + | $$ | |
| + | \prod _ { \mathfrak P } \left ( | ||
| + | \frac{a, b }{\mathfrak P } | ||
| + | \right ) = 1. | ||
| + | $$ | ||
| − | He also noted the analogy between this formula and the theorem on residues of algebraic functions — regular points | + | He also noted the analogy between this formula and the theorem on residues of algebraic functions — regular points $ \mathfrak P $ |
| + | with norm-residue symbol $ \neq 1 $ | ||
| + | correspond to branch points on a Riemann surface. | ||
Further advances in the study of reciprocity laws are due to Ph. Furtwängler , T. Takagi [[#References|[8]]], E. Artin [[#References|[9]]], and H. Hasse [[#References|[10]]]. The most general form of the reciprocity law was obtained by I.R. Shafarevich [[#References|[11]]]. | Further advances in the study of reciprocity laws are due to Ph. Furtwängler , T. Takagi [[#References|[8]]], E. Artin [[#References|[9]]], and H. Hasse [[#References|[10]]]. The most general form of the reciprocity law was obtained by I.R. Shafarevich [[#References|[11]]]. | ||
| − | Similarly to Gauss' reciprocity law, the general reciprocity law is closely connected with the study of decomposition laws of prime divisors | + | Similarly to Gauss' reciprocity law, the general reciprocity law is closely connected with the study of decomposition laws of prime divisors $ \mathfrak P $ |
| + | of a given algebraic number field $ k $ | ||
| + | in an algebraic extension $ K/k $ | ||
| + | with an Abelian Galois group. In particular, [[Class field theory|class field theory]], which offers a solution to this problem, may be based [[#References|[12]]] on Shafarevich's reciprocity law. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> C.F. Gauss, "Untersuchungen über höhere Arithmetik" , Springer (1889) (Translated from Latin)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> C.F. Gauss, "Theoria residuorum biquadraticorum" , ''Werke'' , '''2''' , K. Gesellschaft Wissenschaft. Göttingen (1876) pp. 65</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G. Eisenstein, "Beweis des Reciprocitätssatzes für die cubischen Reste in der Theorie der aus dritten Würzeln der Einheit zusammengesetzten complexen Zahlen" ''J. Math.'' , '''27''' (1844) pp. 289–310</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E.E. Kummer, "Allgemeine Reciprocitätsgesetze für beliebig hohe Potentzreste" ''Ber. K. Akad. Wiss. Berlin'' (1850) pp. 154–165</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> D. Hilbert, "Die Theorie der algebraischen Zahlkörper" ''Jahresber. Deutsch. Math.-Verein'' , '''4''' (1897) pp. 175–546</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> D. Hilbert, "Ueber die theorie der relativquadratischen Zahlkörpern" ''Jahresber. Deutsch. Math.-Verein'' , '''6''' : 1 (1899) pp. 88–94</TD></TR><TR><TD valign="top">[7a]</TD> <TD valign="top"> Ph. Furtwängler, "Die Reziprozitätsgesetze für Potenzreste mit Primzahlexponenten in algebraischen Zahlkörpern (Erster Teil)" ''Math. Ann.'' , '''67''' (1909) pp. 1–31</TD></TR><TR><TD valign="top">[7b]</TD> <TD valign="top"> Ph. Furtwängler, "Die Reziprozitätsgesetze für Potenzreste mit Primzahlexponenten in algebraischen Zahlkörpern (Zweiter Teil)" ''Math. Ann.'' , '''72''' (1912) pp. 346–386</TD></TR><TR><TD valign="top">[7c]</TD> <TD valign="top"> Ph. Furtwängler, "Die Reziprozitätsgesetze für Potenzreste mit Primzahlexponenten in algebraischen Zahlkörpern (Dritter und letzter Teil)" ''Math. Ann.'' , '''74''' (1913) pp. 413–429</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> T. Takagi, "Ueber eine Theorie der relativ Abel'schen Zahlkörpers" ''J. Coll. Sci. Tokyo'' , '''41''' : 9 (1920) pp. 1–133</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> E. Artin, "Beweis des allgemeinen Reziprocitätsgesetzes" ''Abh. Math. Sem. Univ. Hamburg'' , '''5''' (1928) pp. 353–363 ((also: Collected Papers, Addison-Wesley, 1965, pp. 131–141))</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> H. Hasse, "Die Struktur der R. Brauerschen Algebrenklassengruppe über einen algebraischer Zahlkörper" ''Math. Ann.'' , '''107''' (1933) pp. 731–760</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top"> I.R. Shafarevich, "A general reciprocity law" ''Uspekhi Mat. Nauk'' , '''3''' : 3 (1948) pp. 165 (In Russian)</TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top"> A.I. Lapin, "A general law of dependence and a new foundation of class field theory" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''18''' (1954) pp. 335–378 (In Russian)</TD></TR><TR><TD valign="top">[13]</TD> <TD valign="top"> J.W.S. Cassels (ed.) A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press (1986)</TD></TR><TR><TD valign="top">[14]</TD> <TD valign="top"> D.K. Faddeev, "On Hilbert's ninth problem" , ''Hilbert problems'' , Moscow (1969) pp. 131–140 (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C.F. Gauss, "Untersuchungen über höhere Arithmetik" , Springer (1889) (Translated from Latin)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> C.F. Gauss, "Theoria residuorum biquadraticorum" , ''Werke'' , '''2''' , K. Gesellschaft Wissenschaft. Göttingen (1876) pp. 65</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G. Eisenstein, "Beweis des Reciprocitätssatzes für die cubischen Reste in der Theorie der aus dritten Würzeln der Einheit zusammengesetzten complexen Zahlen" ''J. Math.'' , '''27''' (1844) pp. 289–310</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E.E. Kummer, "Allgemeine Reciprocitätsgesetze für beliebig hohe Potentzreste" ''Ber. K. Akad. Wiss. Berlin'' (1850) pp. 154–165</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> D. Hilbert, "Die Theorie der algebraischen Zahlkörper" ''Jahresber. Deutsch. Math.-Verein'' , '''4''' (1897) pp. 175–546</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> D. Hilbert, "Ueber die theorie der relativquadratischen Zahlkörpern" ''Jahresber. Deutsch. Math.-Verein'' , '''6''' : 1 (1899) pp. 88–94</TD></TR><TR><TD valign="top">[7a]</TD> <TD valign="top"> Ph. Furtwängler, "Die Reziprozitätsgesetze für Potenzreste mit Primzahlexponenten in algebraischen Zahlkörpern (Erster Teil)" ''Math. Ann.'' , '''67''' (1909) pp. 1–31</TD></TR><TR><TD valign="top">[7b]</TD> <TD valign="top"> Ph. Furtwängler, "Die Reziprozitätsgesetze für Potenzreste mit Primzahlexponenten in algebraischen Zahlkörpern (Zweiter Teil)" ''Math. Ann.'' , '''72''' (1912) pp. 346–386</TD></TR><TR><TD valign="top">[7c]</TD> <TD valign="top"> Ph. Furtwängler, "Die Reziprozitätsgesetze für Potenzreste mit Primzahlexponenten in algebraischen Zahlkörpern (Dritter und letzter Teil)" ''Math. Ann.'' , '''74''' (1913) pp. 413–429</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> T. Takagi, "Ueber eine Theorie der relativ Abel'schen Zahlkörpers" ''J. Coll. Sci. Tokyo'' , '''41''' : 9 (1920) pp. 1–133</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> E. Artin, "Beweis des allgemeinen Reziprocitätsgesetzes" ''Abh. Math. Sem. Univ. Hamburg'' , '''5''' (1928) pp. 353–363 ((also: Collected Papers, Addison-Wesley, 1965, pp. 131–141))</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> H. Hasse, "Die Struktur der R. Brauerschen Algebrenklassengruppe über einen algebraischer Zahlkörper" ''Math. Ann.'' , '''107''' (1933) pp. 731–760</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top"> I.R. Shafarevich, "A general reciprocity law" ''Uspekhi Mat. Nauk'' , '''3''' : 3 (1948) pp. 165 (In Russian)</TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top"> A.I. Lapin, "A general law of dependence and a new foundation of class field theory" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''18''' (1954) pp. 335–378 (In Russian)</TD></TR><TR><TD valign="top">[13]</TD> <TD valign="top"> J.W.S. Cassels (ed.) A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press (1986)</TD></TR><TR><TD valign="top">[14]</TD> <TD valign="top"> D.K. Faddeev, "On Hilbert's ninth problem" , ''Hilbert problems'' , Moscow (1969) pp. 131–140 (In Russian)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
Latest revision as of 08:10, 6 June 2020
A number of statements expressing relations between power-residue symbols or norm-residue symbols (cf. Power residue; Norm-residue symbol).
The simplest manifestation of reciprocity laws is the following fact, which was already known to P. Fermat. The only prime divisors of the numbers $ x ^ {2} + 1 $ are $ 2 $ and primes which are terms of the arithmetical series $ 1 + 4k $. In other words, the identity
$$ x ^ {2} + 1 \equiv 0 ( \mathop{\rm mod} p) , $$
where $ p > 2 $ is a prime, is solvable if and only if $ p \equiv 1 $ $ ( \mathop{\rm mod} 4) $. This assertion may be expressed with the aid of the quadratic-residue symbol (Legendre symbol) $ \left ( \frac{a}{p} \right ) $ as follows:
$$ \left ( - \frac{1}{p} \right ) = (- 1) ^ {( p- 1) / {2 } } . $$
In the more general case, the problem of solvability of the congruence
$$ \tag{* } x ^ {2} \equiv a ( \mathop{\rm mod} p) $$
is solved by the Gauss reciprocity law:
$$ \left ( { \frac{p}{q} } \right ) \left ( { \frac{q}{p} } \right ) = \ (- 1) ^ {( p- 1) / 2 \cdot ( q- 1) / 2 } , $$
where $ p $ and $ q $ are different odd primes, and by the following two complements:
$$ \left ( {- \frac{1}{p} } \right ) = \ (- 1) ^ {( p- 2) / {2 } } \ \ \textrm{ and } \ \left ( { \frac{2}{p} } \right ) = \ (- 1) ^ {( p ^ {2} - 1) / {8 } } . $$
These relations for the Legendre symbol show that the prime numbers $ p $ for which (*) is solvable for a given non-square $ a $ are contained in exactly one-half of the residue classes modulo $ 4 | a | $.
C.F. Gauss recognized the great importance of this reciprocity law and gave several proofs of it, based on completely different concepts [1]. It follows from Gauss' reciprocity law and from its further generalization (the reciprocity law for the Jacobi symbol) that, in particular, the decomposition of a prime number $ p $ in a quadratic extension $ \mathbf Q ( \sqrt d ) $ of the field of rational numbers $ \mathbf Q $( cf. Quadratic field) is determined by the residue class of $ p $ modulo $ 4 | d | $.
Gauss' reciprocity law has been generalized to congruences of the form
$$ x ^ {n} \equiv a ( \mathop{\rm mod} p),\ \ n > 2. $$
However, this involves a transition from the arithmetic of the rational integers to the arithmetic of the integers of an extension $ K $ of finite degree of the field of rational numbers. Also, in generalizing the reciprocity law to $ n $- th power residues, the extension must be assumed to contain a primitive $ n $- th root of unity $ \zeta $. Under this assumption, prime divisors $ \mathfrak P $ of $ K $ which are not divisors of $ n $ satisfy the congruence
$$ N _ {\mathfrak P} \equiv 1 ( \mathop{\rm mod} n), $$
where $ N _ {\mathfrak P} $ is the norm of the divisor $ \mathfrak P $, equal to the number of residue classes of the maximal order of this field modulo $ \mathfrak P $. The analogue of the Legendre symbol is defined by the congruence
$$ \left ( { \frac{a}{\mathfrak P} } \right ) = \ \zeta ^ {k} \equiv \ a ^ {( N _ {\mathfrak P} - 1) / {n } } \ ( \mathop{\rm mod} \mathfrak P ). $$
The power-residue symbol $ \left ( \frac{a}{b} \right ) $ for a pair of integers $ a $ and $ b $, analogous to the Jacobi symbol, is defined by the formula
$$ \left ( { \frac{a}{b} } \right ) = \ \prod \left ( { \frac{a}{\mathfrak P _ {i} } } \right ) ^ {m} _ {i} , $$
if $ ( b) = \prod \mathfrak P _ {i} ^ {m _ {i} } $ is the decomposition of the principal divisor $ ( b) $ into prime factors and $ b $ and $ an $ are relatively prime.
The reciprocity law for $ n = 4 $ in the field $ \mathbf Q ( i) $ was established by Gauss [2], while that for $ n = 3 $ in the field $ \mathbf Q ( e ^ {2 \pi i / 3 } ) $ was established by G. Eisenstein [3]. E. Kummer [4] established the general reciprocity law for the power-residue symbol in the field $ \mathbf Q ( e ^ {2 \pi i / n } ) $, where $ n $ is a prime. Kummer's formula for a regular prime number $ n $ has the form
$$ \left ( { \frac{a}{b} } \right ) \left ( { \frac{b}{a} } \right ) ^ {-} 1 = \ \zeta ^ {l ^ {1} ( a) l ^ {n- 1 } ( b) - l ^ {2} ( a) l ^ {n- 2 } ( b) + \dots - l ^ {n- 1 } ( a) l ^ {1} ( b) } , $$
where $ a, b $ are integers in the field $ \mathbf Q ( e ^ {2 \pi i / n } ) $,
$$ a \equiv b \equiv 1 ( \mathop{\rm mod} ( \zeta - 1)), $$
$$ l ^ {i} ( a) = \left [ \frac{d ^ {i} \mathop{\rm log} f( e ^ {u} ) }{du ^ {i} } \right ] _ {u=} 0 , $$
and $ f( t) $ is a polynomial of degree $ n - 1 $ such that
$$ a = f ( \zeta ),\ f ( 1) = 1. $$
The next stage in the study of general reciprocity laws is represented by the work of D. Hilbert [5], [6], who cleared up their local aspect. He established, in certain cases, reciprocity laws in the form of a product formula for his norm-residue symbol:
$$ \prod _ { \mathfrak P } \left ( \frac{a, b }{\mathfrak P } \right ) = 1. $$
He also noted the analogy between this formula and the theorem on residues of algebraic functions — regular points $ \mathfrak P $ with norm-residue symbol $ \neq 1 $ correspond to branch points on a Riemann surface.
Further advances in the study of reciprocity laws are due to Ph. Furtwängler , T. Takagi [8], E. Artin [9], and H. Hasse [10]. The most general form of the reciprocity law was obtained by I.R. Shafarevich [11].
Similarly to Gauss' reciprocity law, the general reciprocity law is closely connected with the study of decomposition laws of prime divisors $ \mathfrak P $ of a given algebraic number field $ k $ in an algebraic extension $ K/k $ with an Abelian Galois group. In particular, class field theory, which offers a solution to this problem, may be based [12] on Shafarevich's reciprocity law.
References
| [1] | C.F. Gauss, "Untersuchungen über höhere Arithmetik" , Springer (1889) (Translated from Latin) |
| [2] | C.F. Gauss, "Theoria residuorum biquadraticorum" , Werke , 2 , K. Gesellschaft Wissenschaft. Göttingen (1876) pp. 65 |
| [3] | G. Eisenstein, "Beweis des Reciprocitätssatzes für die cubischen Reste in der Theorie der aus dritten Würzeln der Einheit zusammengesetzten complexen Zahlen" J. Math. , 27 (1844) pp. 289–310 |
| [4] | E.E. Kummer, "Allgemeine Reciprocitätsgesetze für beliebig hohe Potentzreste" Ber. K. Akad. Wiss. Berlin (1850) pp. 154–165 |
| [5] | D. Hilbert, "Die Theorie der algebraischen Zahlkörper" Jahresber. Deutsch. Math.-Verein , 4 (1897) pp. 175–546 |
| [6] | D. Hilbert, "Ueber die theorie der relativquadratischen Zahlkörpern" Jahresber. Deutsch. Math.-Verein , 6 : 1 (1899) pp. 88–94 |
| [7a] | Ph. Furtwängler, "Die Reziprozitätsgesetze für Potenzreste mit Primzahlexponenten in algebraischen Zahlkörpern (Erster Teil)" Math. Ann. , 67 (1909) pp. 1–31 |
| [7b] | Ph. Furtwängler, "Die Reziprozitätsgesetze für Potenzreste mit Primzahlexponenten in algebraischen Zahlkörpern (Zweiter Teil)" Math. Ann. , 72 (1912) pp. 346–386 |
| [7c] | Ph. Furtwängler, "Die Reziprozitätsgesetze für Potenzreste mit Primzahlexponenten in algebraischen Zahlkörpern (Dritter und letzter Teil)" Math. Ann. , 74 (1913) pp. 413–429 |
| [8] | T. Takagi, "Ueber eine Theorie der relativ Abel'schen Zahlkörpers" J. Coll. Sci. Tokyo , 41 : 9 (1920) pp. 1–133 |
| [9] | E. Artin, "Beweis des allgemeinen Reziprocitätsgesetzes" Abh. Math. Sem. Univ. Hamburg , 5 (1928) pp. 353–363 ((also: Collected Papers, Addison-Wesley, 1965, pp. 131–141)) |
| [10] | H. Hasse, "Die Struktur der R. Brauerschen Algebrenklassengruppe über einen algebraischer Zahlkörper" Math. Ann. , 107 (1933) pp. 731–760 |
| [11] | I.R. Shafarevich, "A general reciprocity law" Uspekhi Mat. Nauk , 3 : 3 (1948) pp. 165 (In Russian) |
| [12] | A.I. Lapin, "A general law of dependence and a new foundation of class field theory" Izv. Akad. Nauk SSSR Ser. Mat. , 18 (1954) pp. 335–378 (In Russian) |
| [13] | J.W.S. Cassels (ed.) A. Fröhlich (ed.) , Algebraic number theory , Acad. Press (1986) |
| [14] | D.K. Faddeev, "On Hilbert's ninth problem" , Hilbert problems , Moscow (1969) pp. 131–140 (In Russian) |
Comments
For a discussion of reciprocity laws in the context of modern class field theory see [a1] and Class field theory.
References
| [a1] | J. Neukirch, "Class field theory" , Springer (1986) pp. Chapt. 4, §4 |
Reciprocity laws. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Reciprocity_laws&oldid=14911