Difference between revisions of "Rank of a Lie algebra"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | r0774501.png | ||
+ | $#A+1 = 34 n = 0 | ||
+ | $#C+1 = 34 : ~/encyclopedia/old_files/data/R077/R.0707450 Rank of a Lie algebra | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The minimal multiplicity of the eigen value $ \lambda = 0 $ | |
+ | for the linear operators $ \mathop{\rm ad} _ {L} x $, | ||
+ | where $ x $ | ||
+ | runs through the whole of the Lie algebra $ L $. | ||
+ | It is assumed that $ L $ | ||
+ | is a finite-dimensional algebra. An element $ x $ | ||
+ | for which the multiplicity is minimal is called regular. The set of regular elements of a Lie algebra is open (in the [[Zariski topology|Zariski topology]]). The rank of a Lie algebra is equal to the dimension of any [[Cartan subalgebra|Cartan subalgebra]] of it. The rank $ \mathop{\rm rk} L $ | ||
+ | of a non-zero Lie algebra $ L $ | ||
+ | satisfies the inequalities | ||
− | + | $$ | |
+ | 1 \leq \mathop{\rm rk} L \leq \mathop{\rm dim} L, | ||
+ | $$ | ||
− | + | and equality $ \mathop{\rm rk} L = \mathop{\rm dim} L $ | |
+ | holds if and only if $ L $ | ||
+ | is nilpotent (cf. [[Lie algebra, nilpotent|Lie algebra, nilpotent]]). For a semi-simple Lie algebra (cf. [[Lie algebra, semi-simple|Lie algebra, semi-simple]]) over a field $ k $ | ||
+ | the rank coincides with the transcendence degree over $ k $ | ||
+ | of the subfield of the field of rational functions on $ L $ | ||
+ | generated by all coefficients of the characteristic polynomials of the endomorphism $ \mathop{\rm ad} _ {L} x $. | ||
+ | |||
+ | If $ R $ | ||
+ | is the radical in $ L $, | ||
+ | then the rank of $ L / R $ | ||
+ | is called the semi-simple rank of the algebra $ L $. | ||
+ | |||
+ | Examples. Let $ L $ | ||
+ | be one of the following Lie algebras: 1) the algebra $ \mathfrak g \mathfrak l _ {n} $ | ||
+ | of all square matrices of order $ n $ | ||
+ | with elements from $ k $; | ||
+ | 2) the algebra $ \mathfrak s \mathfrak l _ {n} $ | ||
+ | of all matrices with zero trace; 3) the algebra of all upper-triangular matrices; 4) the algebra of all diagonal matrices; or 5) the algebra of all upper-triangular matrices with zeros on the principal diagonal. For these algebras the ranks are $ n $, | ||
+ | $ n - 1 $, | ||
+ | $ n $, | ||
+ | $ n $, | ||
+ | $ n ( n - 1 ) / 2 $, | ||
+ | and the semi-simple ranks are $ n - 1 $, | ||
+ | $ n - 1 $, | ||
+ | $ 0 $, | ||
+ | $ 0 $, | ||
+ | $ 0 $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Jacobson, "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979))</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.-P. Serre, "Lie algebras and Lie groups" , Benjamin (1965) (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> C. Chevalley, "Théorie des groupes de Lie" , '''3''' , Hermann (1955)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Jacobson, "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979))</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.-P. Serre, "Lie algebras and Lie groups" , Benjamin (1965) (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> C. Chevalley, "Théorie des groupes de Lie" , '''3''' , Hermann (1955)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.E. Humphreys, "Introduction to Lie algebras and representation theory" , Springer (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N. Bourbaki, "Eléments de mathématique. Groupes et algèbres de Lie" , Hermann (1975) pp. Chapt. 7</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.E. Humphreys, "Introduction to Lie algebras and representation theory" , Springer (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N. Bourbaki, "Eléments de mathématique. Groupes et algèbres de Lie" , Hermann (1975) pp. Chapt. 7</TD></TR></table> |
Latest revision as of 08:09, 6 June 2020
The minimal multiplicity of the eigen value $ \lambda = 0 $
for the linear operators $ \mathop{\rm ad} _ {L} x $,
where $ x $
runs through the whole of the Lie algebra $ L $.
It is assumed that $ L $
is a finite-dimensional algebra. An element $ x $
for which the multiplicity is minimal is called regular. The set of regular elements of a Lie algebra is open (in the Zariski topology). The rank of a Lie algebra is equal to the dimension of any Cartan subalgebra of it. The rank $ \mathop{\rm rk} L $
of a non-zero Lie algebra $ L $
satisfies the inequalities
$$ 1 \leq \mathop{\rm rk} L \leq \mathop{\rm dim} L, $$
and equality $ \mathop{\rm rk} L = \mathop{\rm dim} L $ holds if and only if $ L $ is nilpotent (cf. Lie algebra, nilpotent). For a semi-simple Lie algebra (cf. Lie algebra, semi-simple) over a field $ k $ the rank coincides with the transcendence degree over $ k $ of the subfield of the field of rational functions on $ L $ generated by all coefficients of the characteristic polynomials of the endomorphism $ \mathop{\rm ad} _ {L} x $.
If $ R $ is the radical in $ L $, then the rank of $ L / R $ is called the semi-simple rank of the algebra $ L $.
Examples. Let $ L $ be one of the following Lie algebras: 1) the algebra $ \mathfrak g \mathfrak l _ {n} $ of all square matrices of order $ n $ with elements from $ k $; 2) the algebra $ \mathfrak s \mathfrak l _ {n} $ of all matrices with zero trace; 3) the algebra of all upper-triangular matrices; 4) the algebra of all diagonal matrices; or 5) the algebra of all upper-triangular matrices with zeros on the principal diagonal. For these algebras the ranks are $ n $, $ n - 1 $, $ n $, $ n $, $ n ( n - 1 ) / 2 $, and the semi-simple ranks are $ n - 1 $, $ n - 1 $, $ 0 $, $ 0 $, $ 0 $.
References
[1] | N. Jacobson, "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979)) |
[2] | J.-P. Serre, "Lie algebras and Lie groups" , Benjamin (1965) (Translated from French) |
[3] | C. Chevalley, "Théorie des groupes de Lie" , 3 , Hermann (1955) |
Comments
References
[a1] | J.E. Humphreys, "Introduction to Lie algebras and representation theory" , Springer (1972) |
[a2] | N. Bourbaki, "Eléments de mathématique. Groupes et algèbres de Lie" , Hermann (1975) pp. Chapt. 7 |
Rank of a Lie algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rank_of_a_Lie_algebra&oldid=14434