|
|
Line 1: |
Line 1: |
− | A function of an arbitrary argument <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r0773301.png" /> (defined on the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r0773302.png" /> of its values, and taking numerical values or, more generally, values in a vector space) whose values are defined in terms of a certain experiment and may vary with the outcome of this experiment according to a given probability distribution. In [[Probability theory|probability theory]], attention centres on numerical (that is, scalar) random functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r0773303.png" />; a random vector function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r0773304.png" /> can be regarded as the aggregate of the scalar functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r0773305.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r0773306.png" /> ranges over the finite or countable set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r0773307.png" /> of components of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r0773308.png" />, that is, as a numerical random function on the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r0773309.png" /> of pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733012.png" />.
| + | <!-- |
| + | r0773301.png |
| + | $#A+1 = 92 n = 0 |
| + | $#C+1 = 92 : ~/encyclopedia/old_files/data/R077/R.0707330 Random function |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733013.png" /> is finite, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733014.png" /> is a finite set of random variables, and can be regarded as a multi-dimensional (vector) random variable characterized by a multi-dimensional distribution function. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733015.png" /> is infinite, the case mostly studied is that in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733016.png" /> takes numerical (real) values; in this case, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733017.png" /> usually denotes time, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733018.png" /> is called a [[Stochastic process|stochastic process]], or, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733019.png" /> takes only integral values, a [[Random sequence|random sequence]] (or time series). If the values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733020.png" /> are the points of a manifold (such as a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733021.png" />-dimensional Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733022.png" />), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733023.png" /> is called a [[Random field|random field]].
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | The probability distribution of the values of a random function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733024.png" /> defined on an infinite set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733025.png" /> is characterized by the aggregate of finite-dimensional probability distributions of sets of random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733026.png" /> corresponding to all finite subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733027.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733028.png" />, that is, the aggregate of corresponding finite-dimensional distribution functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733029.png" />, satisfying the consistency conditions:
| + | A function of an arbitrary argument $ t $( |
| + | defined on the set $ T $ |
| + | of its values, and taking numerical values or, more generally, values in a vector space) whose values are defined in terms of a certain experiment and may vary with the outcome of this experiment according to a given probability distribution. In [[Probability theory|probability theory]], attention centres on numerical (that is, scalar) random functions $ X ( t) $; |
| + | a random vector function $ \mathbf X ( t) $ |
| + | can be regarded as the aggregate of the scalar functions $ X _ \alpha ( t) $, |
| + | where $ \alpha $ |
| + | ranges over the finite or countable set $ A $ |
| + | of components of $ \mathbf X $, |
| + | that is, as a numerical random function on the set $ T _ {1} = T \times A $ |
| + | of pairs $ ( t , \alpha ) $, |
| + | $ t \in T $, |
| + | $ \alpha \in A $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733030.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
| + | When $ T $ |
| + | is finite, $ X ( t) $ |
| + | is a finite set of random variables, and can be regarded as a multi-dimensional (vector) random variable characterized by a multi-dimensional distribution function. When $ T $ |
| + | is infinite, the case mostly studied is that in which $ t $ |
| + | takes numerical (real) values; in this case, $ t $ |
| + | usually denotes time, and $ X ( t) $ |
| + | is called a [[Stochastic process|stochastic process]], or, if $ t $ |
| + | takes only integral values, a [[Random sequence|random sequence]] (or time series). If the values of $ t $ |
| + | are the points of a manifold (such as a $ k $- |
| + | dimensional Euclidean space $ \mathbf R ^ {k} $), |
| + | then $ X ( t) $ |
| + | is called a [[Random field|random field]]. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733031.png" /></td> </tr></table>
| + | The probability distribution of the values of a random function $ X ( t) $ |
| + | defined on an infinite set $ T $ |
| + | is characterized by the aggregate of finite-dimensional probability distributions of sets of random variables $ X ( t _ {1} ) \dots X ( t _ {n} ) $ |
| + | corresponding to all finite subsets $ \{ t _ {1} \dots t _ {n} \} $ |
| + | of $ T $, |
| + | that is, the aggregate of corresponding finite-dimensional distribution functions $ F _ {t _ {1} \dots t _ {n} } ( x _ {1} \dots x _ {n} ) $, |
| + | satisfying the consistency conditions: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733032.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
| + | $$ \tag{1 } |
| + | F _ {t _ {1} \dots t _ {n} , t _ {n+} 1 \dots t _ {n+} m } ( x _ {1} \dots x _ {n} , \infty \dots \infty ) = |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733033.png" /> is an arbitrary permutation of the subscripts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733034.png" />. This characterization of the probability distribution of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733035.png" /> is sufficient in all cases when one is only interested in events depending on the values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733036.png" /> on countable subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733037.png" />. But it does not enable one to determine the probability of properties of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733038.png" /> that depend on its values on a continuous subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733039.png" />, such as the probability of continuity or differentiability, or the probability that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733040.png" /> on a continuous subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733041.png" /> (see [[Separable process|Separable process]]).
| + | $$ |
| + | = \ |
| + | F _ {t _ {1} \dots t _ {n} } ( x _ {1} \dots x _ {n} ) , |
| + | $$ |
| | | |
− | Random functions can be described more generally in terms of aggregates of random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733042.png" /> defined on a fixed [[Probability space|probability space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733043.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733044.png" /> is a set of points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733045.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733046.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733047.png" />-algebra of subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733048.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733049.png" /> is a given probability measure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733050.png" />), one for each point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733051.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733052.png" />. In this approach, a random function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733053.png" /> is regarded as a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733054.png" /> of two variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733055.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733056.png" /> which is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733057.png" />-measurable for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733058.png" /> (that is, for fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733059.png" /> it reduces to a random variable defined on the probability space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733060.png" />). By taking a fixed value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733061.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733062.png" />, one obtains a numerical function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733063.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733064.png" />, called a realization (or sample function or, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733065.png" /> denotes time, a trajectory) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733066.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733067.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733068.png" /> induce a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733069.png" />-algebra of subsets and a probability measure defined on it in the function space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733070.png" /> of realizations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733071.png" />, whose specification can also be regarded as equivalent to that of the random function. The specification of a random function as a probability measure on a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733072.png" />-algebra of subsets of the function space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733073.png" /> of all possible realizations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733074.png" /> can be regarded as a special case of its general specification as a function of two variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733075.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733076.png" /> belongs to the probability space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733077.png" /> in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733078.png" />), that is, elementary events (points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733079.png" /> in the given probability space) are identified at the outset with the realizations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733080.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733081.png" />. On the other hand, it is also possible to show that any other way of specifying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733082.png" /> can be reduced to this form using a special determination of a probability measure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733083.png" />. In particular, Kolmogorov's fundamental theorem on consistent distributions (see [[Probability space|Probability space]]) shows that the specification of the aggregate of all possible finite-dimensional distribution functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733084.png" /> satisfying the above consistency conditions (1) and (2) defines a probability measure on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733085.png" />-algebra of subsets of the function space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733086.png" /> generated by the aggregate of cylindrical sets (cf. [[Cylinder set|Cylinder set]]) of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733087.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733088.png" /> is an arbitrary positive integer and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733089.png" /> is an arbitrary Borel set of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733090.png" />-dimensional space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733091.png" /> of vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733092.png" />.
| + | $$ \tag{2 } |
| + | F _ {t _ {i _ {1} } \dots t _ {i _ {n} } } |
| + | ( x _ {i _ {1} } \dots x _ {i _ {n} } ) = F _ {t _ {1} \dots t _ {n} } ( x _ {1} \dots x _ {n} ) , |
| + | $$ |
| | | |
− | For references see [[Stochastic process|Stochastic process]].
| + | where $ i _ {1} \dots i _ {n} $ |
| + | is an arbitrary permutation of the subscripts $ 1 \dots n $. |
| + | This characterization of the probability distribution of $ X ( t) $ |
| + | is sufficient in all cases when one is only interested in events depending on the values of $ X $ |
| + | on countable subsets of $ T $. |
| + | But it does not enable one to determine the probability of properties of $ X $ |
| + | that depend on its values on a continuous subset of $ T $, |
| + | such as the probability of continuity or differentiability, or the probability that $ X ( t) < a $ |
| + | on a continuous subset of $ T $( |
| + | see [[Separable process|Separable process]]). |
| | | |
| + | Random functions can be described more generally in terms of aggregates of random variables $ X = X ( \omega ) $ |
| + | defined on a fixed [[Probability space|probability space]] $ ( \Omega , {\mathcal A} , {\mathsf P} ) $( |
| + | where $ \Omega $ |
| + | is a set of points $ \omega $, |
| + | $ {\mathcal A} $ |
| + | is a $ \sigma $- |
| + | algebra of subsets of $ \Omega $ |
| + | and $ {\mathsf P} $ |
| + | is a given probability measure on $ {\mathcal A} $), |
| + | one for each point $ t $ |
| + | of $ T $. |
| + | In this approach, a random function on $ T $ |
| + | is regarded as a function $ X ( t , \omega ) $ |
| + | of two variables $ t \in T $ |
| + | and $ \omega \in \Omega $ |
| + | which is $ {\mathcal A} $- |
| + | measurable for every $ t $( |
| + | that is, for fixed $ t $ |
| + | it reduces to a random variable defined on the probability space $ ( \Omega , {\mathcal A} , {\mathsf P} ) $). |
| + | By taking a fixed value $ \omega _ {0} $ |
| + | of $ \omega $, |
| + | one obtains a numerical function $ X ( t , \omega _ {0} ) = x ( t) $ |
| + | on $ T $, |
| + | called a realization (or sample function or, when $ t $ |
| + | denotes time, a trajectory) of $ X ( t) $; |
| + | $ {\mathcal A} $ |
| + | and $ {\mathsf P} $ |
| + | induce a $ \sigma $- |
| + | algebra of subsets and a probability measure defined on it in the function space $ \mathbf R ^ {T} = \{ {x ( t) } : {t \in T } \} $ |
| + | of realizations $ x ( t) $, |
| + | whose specification can also be regarded as equivalent to that of the random function. The specification of a random function as a probability measure on a $ \sigma $- |
| + | algebra of subsets of the function space $ \mathbf R ^ {T} $ |
| + | of all possible realizations $ x ( t) $ |
| + | can be regarded as a special case of its general specification as a function of two variables $ X ( t , \omega ) $( |
| + | where $ \omega $ |
| + | belongs to the probability space $ ( \Omega , {\mathcal A} , {\mathsf P} ) $ |
| + | in which $ \Omega = \mathbf R ^ {T} $), |
| + | that is, elementary events (points $ \omega $ |
| + | in the given probability space) are identified at the outset with the realizations $ x ( t) $ |
| + | of $ X ( t) $. |
| + | On the other hand, it is also possible to show that any other way of specifying $ X ( t) $ |
| + | can be reduced to this form using a special determination of a probability measure on $ \mathbf R ^ {T} $. |
| + | In particular, Kolmogorov's fundamental theorem on consistent distributions (see [[Probability space|Probability space]]) shows that the specification of the aggregate of all possible finite-dimensional distribution functions $ F _ {t _ {1} \dots t _ {n} } ( x _ {1} \dots x _ {n} ) $ |
| + | satisfying the above consistency conditions (1) and (2) defines a probability measure on the $ \sigma $- |
| + | algebra of subsets of the function space $ \mathbf R ^ {T} = \{ {x ( t) } : {t \in T } \} $ |
| + | generated by the aggregate of cylindrical sets (cf. [[Cylinder set|Cylinder set]]) of the form $ \{ {x ( t) } : {[ x ( t _ {1} ) \dots x ( t _ {n} ) ] \in B ^ {n} } \} $, |
| + | where $ n $ |
| + | is an arbitrary positive integer and $ B ^ {n} $ |
| + | is an arbitrary Borel set of the $ n $- |
| + | dimensional space $ \mathbf R ^ {n} $ |
| + | of vectors $ [ x ( t _ {1} ) \dots x ( t _ {n} ) ] $. |
| | | |
| + | For references see [[Stochastic process|Stochastic process]]. |
| | | |
| ====Comments==== | | ====Comments==== |
− |
| |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.L. Doob, "Stochastic processes" , Wiley (1953)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Loève, "Probability theory" , Springer (1977)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> I.I. [I.I. Gikhman] Gihman, A.V. [A.V. Skorokhod] Skorohod, "The theory of stochastic processes" , '''1''' , Springer (1974) (Translated from Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A. Blanc-Lapierre, R. Fortet, "Theory of random functions" , '''1–2''' , Gordon & Breach (1965) (Translated from French)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.L. Doob, "Stochastic processes" , Wiley (1953)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Loève, "Probability theory" , Springer (1977)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> I.I. [I.I. Gikhman] Gihman, A.V. [A.V. Skorokhod] Skorohod, "The theory of stochastic processes" , '''1''' , Springer (1974) (Translated from Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A. Blanc-Lapierre, R. Fortet, "Theory of random functions" , '''1–2''' , Gordon & Breach (1965) (Translated from French)</TD></TR></table> |
A function of an arbitrary argument $ t $(
defined on the set $ T $
of its values, and taking numerical values or, more generally, values in a vector space) whose values are defined in terms of a certain experiment and may vary with the outcome of this experiment according to a given probability distribution. In probability theory, attention centres on numerical (that is, scalar) random functions $ X ( t) $;
a random vector function $ \mathbf X ( t) $
can be regarded as the aggregate of the scalar functions $ X _ \alpha ( t) $,
where $ \alpha $
ranges over the finite or countable set $ A $
of components of $ \mathbf X $,
that is, as a numerical random function on the set $ T _ {1} = T \times A $
of pairs $ ( t , \alpha ) $,
$ t \in T $,
$ \alpha \in A $.
When $ T $
is finite, $ X ( t) $
is a finite set of random variables, and can be regarded as a multi-dimensional (vector) random variable characterized by a multi-dimensional distribution function. When $ T $
is infinite, the case mostly studied is that in which $ t $
takes numerical (real) values; in this case, $ t $
usually denotes time, and $ X ( t) $
is called a stochastic process, or, if $ t $
takes only integral values, a random sequence (or time series). If the values of $ t $
are the points of a manifold (such as a $ k $-
dimensional Euclidean space $ \mathbf R ^ {k} $),
then $ X ( t) $
is called a random field.
The probability distribution of the values of a random function $ X ( t) $
defined on an infinite set $ T $
is characterized by the aggregate of finite-dimensional probability distributions of sets of random variables $ X ( t _ {1} ) \dots X ( t _ {n} ) $
corresponding to all finite subsets $ \{ t _ {1} \dots t _ {n} \} $
of $ T $,
that is, the aggregate of corresponding finite-dimensional distribution functions $ F _ {t _ {1} \dots t _ {n} } ( x _ {1} \dots x _ {n} ) $,
satisfying the consistency conditions:
$$ \tag{1 }
F _ {t _ {1} \dots t _ {n} , t _ {n+} 1 \dots t _ {n+} m } ( x _ {1} \dots x _ {n} , \infty \dots \infty ) =
$$
$$
= \
F _ {t _ {1} \dots t _ {n} } ( x _ {1} \dots x _ {n} ) ,
$$
$$ \tag{2 }
F _ {t _ {i _ {1} } \dots t _ {i _ {n} } }
( x _ {i _ {1} } \dots x _ {i _ {n} } ) = F _ {t _ {1} \dots t _ {n} } ( x _ {1} \dots x _ {n} ) ,
$$
where $ i _ {1} \dots i _ {n} $
is an arbitrary permutation of the subscripts $ 1 \dots n $.
This characterization of the probability distribution of $ X ( t) $
is sufficient in all cases when one is only interested in events depending on the values of $ X $
on countable subsets of $ T $.
But it does not enable one to determine the probability of properties of $ X $
that depend on its values on a continuous subset of $ T $,
such as the probability of continuity or differentiability, or the probability that $ X ( t) < a $
on a continuous subset of $ T $(
see Separable process).
Random functions can be described more generally in terms of aggregates of random variables $ X = X ( \omega ) $
defined on a fixed probability space $ ( \Omega , {\mathcal A} , {\mathsf P} ) $(
where $ \Omega $
is a set of points $ \omega $,
$ {\mathcal A} $
is a $ \sigma $-
algebra of subsets of $ \Omega $
and $ {\mathsf P} $
is a given probability measure on $ {\mathcal A} $),
one for each point $ t $
of $ T $.
In this approach, a random function on $ T $
is regarded as a function $ X ( t , \omega ) $
of two variables $ t \in T $
and $ \omega \in \Omega $
which is $ {\mathcal A} $-
measurable for every $ t $(
that is, for fixed $ t $
it reduces to a random variable defined on the probability space $ ( \Omega , {\mathcal A} , {\mathsf P} ) $).
By taking a fixed value $ \omega _ {0} $
of $ \omega $,
one obtains a numerical function $ X ( t , \omega _ {0} ) = x ( t) $
on $ T $,
called a realization (or sample function or, when $ t $
denotes time, a trajectory) of $ X ( t) $;
$ {\mathcal A} $
and $ {\mathsf P} $
induce a $ \sigma $-
algebra of subsets and a probability measure defined on it in the function space $ \mathbf R ^ {T} = \{ {x ( t) } : {t \in T } \} $
of realizations $ x ( t) $,
whose specification can also be regarded as equivalent to that of the random function. The specification of a random function as a probability measure on a $ \sigma $-
algebra of subsets of the function space $ \mathbf R ^ {T} $
of all possible realizations $ x ( t) $
can be regarded as a special case of its general specification as a function of two variables $ X ( t , \omega ) $(
where $ \omega $
belongs to the probability space $ ( \Omega , {\mathcal A} , {\mathsf P} ) $
in which $ \Omega = \mathbf R ^ {T} $),
that is, elementary events (points $ \omega $
in the given probability space) are identified at the outset with the realizations $ x ( t) $
of $ X ( t) $.
On the other hand, it is also possible to show that any other way of specifying $ X ( t) $
can be reduced to this form using a special determination of a probability measure on $ \mathbf R ^ {T} $.
In particular, Kolmogorov's fundamental theorem on consistent distributions (see Probability space) shows that the specification of the aggregate of all possible finite-dimensional distribution functions $ F _ {t _ {1} \dots t _ {n} } ( x _ {1} \dots x _ {n} ) $
satisfying the above consistency conditions (1) and (2) defines a probability measure on the $ \sigma $-
algebra of subsets of the function space $ \mathbf R ^ {T} = \{ {x ( t) } : {t \in T } \} $
generated by the aggregate of cylindrical sets (cf. Cylinder set) of the form $ \{ {x ( t) } : {[ x ( t _ {1} ) \dots x ( t _ {n} ) ] \in B ^ {n} } \} $,
where $ n $
is an arbitrary positive integer and $ B ^ {n} $
is an arbitrary Borel set of the $ n $-
dimensional space $ \mathbf R ^ {n} $
of vectors $ [ x ( t _ {1} ) \dots x ( t _ {n} ) ] $.
For references see Stochastic process.
References
[a1] | J.L. Doob, "Stochastic processes" , Wiley (1953) |
[a2] | M. Loève, "Probability theory" , Springer (1977) |
[a3] | I.I. [I.I. Gikhman] Gihman, A.V. [A.V. Skorokhod] Skorohod, "The theory of stochastic processes" , 1 , Springer (1974) (Translated from Russian) |
[a4] | A. Blanc-Lapierre, R. Fortet, "Theory of random functions" , 1–2 , Gordon & Breach (1965) (Translated from French) |