Difference between revisions of "Radon transform"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | r0771901.png | ||
+ | $#A+1 = 23 n = 0 | ||
+ | $#C+1 = 23 : ~/encyclopedia/old_files/data/R077/R.0707190 Radon transform | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
An integral transform of a function in several variables, related to the [[Fourier transform|Fourier transform]]. It was introduced by J. Radon (see [[#References|[1]]]). | An integral transform of a function in several variables, related to the [[Fourier transform|Fourier transform]]. It was introduced by J. Radon (see [[#References|[1]]]). | ||
− | Let | + | Let $ f ( x _ {1} \dots x _ {n} ) $ |
+ | be a continuous function of the real variables $ x _ {i} \in \mathbf R ^ {1} $ | ||
+ | that is decreasing sufficiently rapidly at infinity, $ i = 1 \dots n $, | ||
+ | $ n = 1 , 2 ,\dots $. | ||
− | For any hyperplane in | + | For any hyperplane in $ \mathbf R ^ {n} $, |
− | + | $$ | |
+ | \Gamma = \{ {( x _ {1} \dots x _ {n} ) } : {\xi _ {1} x _ {1} + \dots + \xi _ {n} x _ {n} = C } \} | ||
+ | , | ||
+ | $$ | ||
− | + | $$ | |
+ | \xi _ {i} \in \mathbf R ^ {1} ,\ i = 1 \dots n , | ||
+ | $$ | ||
and | and | ||
− | + | $$ | |
+ | \sum _ { i= } 1 ^ { n } \xi _ {i} ^ {2} > 0 ,\ \ | ||
+ | C \in \mathbf R ^ {1} , | ||
+ | $$ | ||
the following integral is defined: | the following integral is defined: | ||
− | + | $$ | |
+ | F ( \xi _ {1} \dots \xi _ {n} ; C ) = \ | ||
+ | |||
+ | \frac{1}{\left ( \sum _ { i= } 1 ^ { n } \xi _ {j} \right ) ^ {1/2} } | ||
− | + | \int\limits _ \Gamma f ( x _ {1} \dots x _ {n} ) d V _ \Gamma , | |
+ | $$ | ||
− | + | where $ V _ \Gamma $ | |
+ | is the Euclidean $ ( n - 1 ) $- | ||
+ | dimensional volume in the hyperplane $ \Gamma $. | ||
+ | The function | ||
− | + | $$ | |
+ | F ( \xi _ {1} \dots \xi _ {n} ; C ) ,\ \ | ||
+ | ( \xi _ {1} \dots x _ {n} , C ) \in \mathbf R ^ {n+} 1 , | ||
+ | $$ | ||
− | + | is called the Radon transform of the function $ f $. | |
+ | It is a homogeneous function of its variables of degree $ - 1 $: | ||
− | + | $$ | |
+ | F ( \alpha \xi _ {1} \dots \alpha \xi _ {n} ; \alpha C ) = \ | ||
− | + | \frac{1}{| \alpha | } | |
+ | F ( \xi _ {1} \dots \xi _ {n} ; C ) , | ||
+ | $$ | ||
− | The Radon transform is immediately associated with the problem, going back to Radon, of the recovery of a function | + | and is related to the Fourier transform $ \widetilde{f} ( \xi _ {1} \dots \xi _ {n} ) $, |
+ | $ \xi _ {i} \in \mathbf R ^ {1} $, | ||
+ | of $ f $ | ||
+ | by | ||
+ | |||
+ | $$ | ||
+ | F ( \xi _ {1} \dots \xi _ {n} ; C ) = | ||
+ | \frac{1}{2 \pi } | ||
+ | \int\limits _ {- \infty } ^ \infty \widetilde{f} | ||
+ | ( \alpha \xi _ {1} \dots \alpha \xi _ {n} ) e ^ {- i \alpha C } d \alpha . | ||
+ | $$ | ||
+ | |||
+ | The Radon transform is immediately associated with the problem, going back to Radon, of the recovery of a function $ f $ | ||
+ | from the values of its integrals calculated over all hyperplanes of the space $ \mathbf R ^ {n} $( | ||
+ | that is, the problem of the inversion of the Radon transform). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Radon, "Ueber die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten" ''Ber. Verh. Sächs. Akad.'' , '''69''' (1917) pp. 262–277</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.M. Gel'fand, M.I. Graev, N.Ya. Vilenkin, "Generalized functions" , '''5. Integral geometry and representation theory''' , Acad. Press (1966) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Radon, "Ueber die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten" ''Ber. Verh. Sächs. Akad.'' , '''69''' (1917) pp. 262–277</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.M. Gel'fand, M.I. Graev, N.Ya. Vilenkin, "Generalized functions" , '''5. Integral geometry and representation theory''' , Acad. Press (1966) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
For the far-reaching generalizations of the Radon transform to homogeneous spaces see [[#References|[a3]]]. | For the far-reaching generalizations of the Radon transform to homogeneous spaces see [[#References|[a3]]]. | ||
− | The Radon transform and, in particular, the corresponding inversion formula (i.e. the formula recovering | + | The Radon transform and, in particular, the corresponding inversion formula (i.e. the formula recovering $ f $ |
+ | from its Radon transform) is of central importance in [[Tomography|tomography]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S.R. Deans, "The Radon transform and some of its applications" , Wiley (1983)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S. Helgason, "The Radon transform" , Birkhäuser (1980)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Helgason, "Groups and geometric analysis" , Acad. Press (1984) pp. Chapt. II, Sect. 4</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S.R. Deans, "The Radon transform and some of its applications" , Wiley (1983)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S. Helgason, "The Radon transform" , Birkhäuser (1980)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Helgason, "Groups and geometric analysis" , Acad. Press (1984) pp. Chapt. II, Sect. 4</TD></TR></table> |
Revision as of 08:09, 6 June 2020
An integral transform of a function in several variables, related to the Fourier transform. It was introduced by J. Radon (see [1]).
Let $ f ( x _ {1} \dots x _ {n} ) $ be a continuous function of the real variables $ x _ {i} \in \mathbf R ^ {1} $ that is decreasing sufficiently rapidly at infinity, $ i = 1 \dots n $, $ n = 1 , 2 ,\dots $.
For any hyperplane in $ \mathbf R ^ {n} $,
$$ \Gamma = \{ {( x _ {1} \dots x _ {n} ) } : {\xi _ {1} x _ {1} + \dots + \xi _ {n} x _ {n} = C } \} , $$
$$ \xi _ {i} \in \mathbf R ^ {1} ,\ i = 1 \dots n , $$
and
$$ \sum _ { i= } 1 ^ { n } \xi _ {i} ^ {2} > 0 ,\ \ C \in \mathbf R ^ {1} , $$
the following integral is defined:
$$ F ( \xi _ {1} \dots \xi _ {n} ; C ) = \ \frac{1}{\left ( \sum _ { i= } 1 ^ { n } \xi _ {j} \right ) ^ {1/2} } \int\limits _ \Gamma f ( x _ {1} \dots x _ {n} ) d V _ \Gamma , $$
where $ V _ \Gamma $ is the Euclidean $ ( n - 1 ) $- dimensional volume in the hyperplane $ \Gamma $. The function
$$ F ( \xi _ {1} \dots \xi _ {n} ; C ) ,\ \ ( \xi _ {1} \dots x _ {n} , C ) \in \mathbf R ^ {n+} 1 , $$
is called the Radon transform of the function $ f $. It is a homogeneous function of its variables of degree $ - 1 $:
$$ F ( \alpha \xi _ {1} \dots \alpha \xi _ {n} ; \alpha C ) = \ \frac{1}{| \alpha | } F ( \xi _ {1} \dots \xi _ {n} ; C ) , $$
and is related to the Fourier transform $ \widetilde{f} ( \xi _ {1} \dots \xi _ {n} ) $, $ \xi _ {i} \in \mathbf R ^ {1} $, of $ f $ by
$$ F ( \xi _ {1} \dots \xi _ {n} ; C ) = \frac{1}{2 \pi } \int\limits _ {- \infty } ^ \infty \widetilde{f} ( \alpha \xi _ {1} \dots \alpha \xi _ {n} ) e ^ {- i \alpha C } d \alpha . $$
The Radon transform is immediately associated with the problem, going back to Radon, of the recovery of a function $ f $ from the values of its integrals calculated over all hyperplanes of the space $ \mathbf R ^ {n} $( that is, the problem of the inversion of the Radon transform).
References
[1] | J. Radon, "Ueber die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten" Ber. Verh. Sächs. Akad. , 69 (1917) pp. 262–277 |
[2] | I.M. Gel'fand, M.I. Graev, N.Ya. Vilenkin, "Generalized functions" , 5. Integral geometry and representation theory , Acad. Press (1966) (Translated from Russian) |
Comments
For the far-reaching generalizations of the Radon transform to homogeneous spaces see [a3].
The Radon transform and, in particular, the corresponding inversion formula (i.e. the formula recovering $ f $ from its Radon transform) is of central importance in tomography.
References
[a1] | S.R. Deans, "The Radon transform and some of its applications" , Wiley (1983) |
[a2] | S. Helgason, "The Radon transform" , Birkhäuser (1980) |
[a3] | S. Helgason, "Groups and geometric analysis" , Acad. Press (1984) pp. Chapt. II, Sect. 4 |
Radon transform. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Radon_transform&oldid=14894