Namespaces
Variants
Actions

Difference between revisions of "Prenex formula"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 +
<!--
 +
p0744201.png
 +
$#A+1 = 27 n = 0
 +
$#C+1 = 27 : ~/encyclopedia/old_files/data/P074/P.0704420 Prenex formula
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A formula from the [[Restricted predicate calculus|restricted predicate calculus]] having the form
 
A formula from the [[Restricted predicate calculus|restricted predicate calculus]] having the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p0744201.png" /></td> </tr></table>
+
$$
 +
Q _ {1} x _ {1} \dots Q _ {n} x _ {n} \Psi ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p0744202.png" /> denotes the [[Universal quantifier|universal quantifier]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p0744203.png" /> or the [[Existential quantifier|existential quantifier]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p0744204.png" />, the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p0744205.png" /> are distinct for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p0744206.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p0744207.png" /> is a formula without quantifiers. Prenex formulas are also called prenex normal forms or prenex forms.
+
where $  Q _ {i} $
 +
denotes the [[Universal quantifier|universal quantifier]] $  \forall $
 +
or the [[Existential quantifier|existential quantifier]] $  \exists $,  
 +
the variables $  x _ {i} , x _ {j} $
 +
are distinct for $  i \neq j $,  
 +
and $  \psi $
 +
is a formula without quantifiers. Prenex formulas are also called prenex normal forms or prenex forms.
  
For each formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p0744208.png" /> of the language of the restricted predicate calculus there is a prenex formula that is logically equivalent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p0744209.png" /> in the classical [[Predicate calculus|predicate calculus]]. The procedure of finding a prenex formula is based on the following equivalences, which can be deduced in the classical predicate calculus:
+
For each formula $  \phi $
 +
of the language of the restricted predicate calculus there is a prenex formula that is logically equivalent to $  \phi $
 +
in the classical [[Predicate calculus|predicate calculus]]. The procedure of finding a prenex formula is based on the following equivalences, which can be deduced in the classical predicate calculus:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p07442010.png" /></td> </tr></table>
+
$$
 +
( \forall x  \phi ( x) \supset \Psi )  \equiv \
 +
\exists x  ^  \prime  ( \phi ( x  ^  \prime  ) \supset \Psi ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p07442011.png" /></td> </tr></table>
+
$$
 +
\exists x  \phi ( x) \supset \Psi  \equiv \
 +
\forall x  ^  \prime  ( \phi ( x  ^  \prime  ) \supset \Psi ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p07442012.png" /></td> </tr></table>
+
$$
 +
\Psi \supset \forall x  \phi ( x)  \equiv \
 +
\forall x  ^  \prime  ( \Psi \supset \phi ( x  ^  \prime  ) ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p07442013.png" /></td> </tr></table>
+
$$
 +
\Psi \supset \exists x  \phi ( x)  \equiv \
 +
\exists x  ^  \prime  ( \Psi \supset \phi ( x  ^  \prime  ) ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p07442014.png" /></td> </tr></table>
+
$$
 +
\neg \forall x  \phi  \equiv  \exists x  \neg \phi ,\ \
 +
\neg \exists x  \phi  \equiv  \forall x  \neg \phi ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p07442015.png" /></td> </tr></table>
+
$$
 +
Q y  \forall x  \phi  \equiv  \forall x  \phi ,\  Q y  \exists x  \phi  \equiv  \exists x  \phi ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p07442016.png" /> is any variable not appearing as a free variable in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p07442017.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p07442018.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p07442019.png" /> can be obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p07442020.png" /> by changing all free appearances of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p07442021.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p07442022.png" />; the variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p07442023.png" /> does not appear as a free variable in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p07442024.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p07442025.png" />. To use the above equivalences one has to first express all logical operators by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p07442026.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074420/p07442027.png" /> and then move all quantifiers to the left by applying the equivalences. The prenex formula thus obtained is called the prenex form of the given formula.
+
where $  x  ^  \prime  $
 +
is any variable not appearing as a free variable in $  \phi ( x) $
 +
or $  \psi $,  
 +
and $  \phi ( x  ^  \prime  ) $
 +
can be obtained from $  \phi ( x) $
 +
by changing all free appearances of $  x $
 +
to $  x  ^  \prime  $;  
 +
the variable $  y $
 +
does not appear as a free variable in $  \forall x  \phi $
 +
or $  \exists x  \phi $.  
 +
To use the above equivalences one has to first express all logical operators by $  \supset $
 +
and $  \neg $
 +
and then move all quantifiers to the left by applying the equivalences. The prenex formula thus obtained is called the prenex form of the given formula.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Mendelson,   "Introduction to mathematical logic" , v. Nostrand (1964)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Mendelson, "Introduction to mathematical logic" , v. Nostrand (1964) {{MR|0164867}} {{ZBL|1173.03001}} {{ZBL|0915.03002}} {{ZBL|0681.03001}} {{ZBL|0534.03001}} {{ZBL|0498.03001}} {{ZBL|0192.01901}} </TD></TR></table>
 
 
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S.C. Kleene,   "Introduction to metamathematics" , North-Holland (1950) pp. Chapt. VII, §35</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Fraissé,   "Course of mathematical logic" , '''1''' , Reidel (1973) pp. Sect. 5.1.1ff</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S.C. Kleene, "Introduction to metamathematics" , North-Holland (1950) pp. Chapt. VII, §35 {{MR|1234051}} {{MR|1570642}} {{MR|0051790}} {{ZBL|0875.03002}} {{ZBL|0604.03002}} {{ZBL|0109.00509}} {{ZBL|0047.00703}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Fraissé, "Course of mathematical logic" , '''1''' , Reidel (1973) pp. Sect. 5.1.1ff {{MR|0345784}} {{ZBL|0262.02001}} </TD></TR></table>

Latest revision as of 08:07, 6 June 2020


A formula from the restricted predicate calculus having the form

$$ Q _ {1} x _ {1} \dots Q _ {n} x _ {n} \Psi , $$

where $ Q _ {i} $ denotes the universal quantifier $ \forall $ or the existential quantifier $ \exists $, the variables $ x _ {i} , x _ {j} $ are distinct for $ i \neq j $, and $ \psi $ is a formula without quantifiers. Prenex formulas are also called prenex normal forms or prenex forms.

For each formula $ \phi $ of the language of the restricted predicate calculus there is a prenex formula that is logically equivalent to $ \phi $ in the classical predicate calculus. The procedure of finding a prenex formula is based on the following equivalences, which can be deduced in the classical predicate calculus:

$$ ( \forall x \phi ( x) \supset \Psi ) \equiv \ \exists x ^ \prime ( \phi ( x ^ \prime ) \supset \Psi ) , $$

$$ \exists x \phi ( x) \supset \Psi \equiv \ \forall x ^ \prime ( \phi ( x ^ \prime ) \supset \Psi ) , $$

$$ \Psi \supset \forall x \phi ( x) \equiv \ \forall x ^ \prime ( \Psi \supset \phi ( x ^ \prime ) ) , $$

$$ \Psi \supset \exists x \phi ( x) \equiv \ \exists x ^ \prime ( \Psi \supset \phi ( x ^ \prime ) ) , $$

$$ \neg \forall x \phi \equiv \exists x \neg \phi ,\ \ \neg \exists x \phi \equiv \forall x \neg \phi , $$

$$ Q y \forall x \phi \equiv \forall x \phi ,\ Q y \exists x \phi \equiv \exists x \phi , $$

where $ x ^ \prime $ is any variable not appearing as a free variable in $ \phi ( x) $ or $ \psi $, and $ \phi ( x ^ \prime ) $ can be obtained from $ \phi ( x) $ by changing all free appearances of $ x $ to $ x ^ \prime $; the variable $ y $ does not appear as a free variable in $ \forall x \phi $ or $ \exists x \phi $. To use the above equivalences one has to first express all logical operators by $ \supset $ and $ \neg $ and then move all quantifiers to the left by applying the equivalences. The prenex formula thus obtained is called the prenex form of the given formula.

References

[1] E. Mendelson, "Introduction to mathematical logic" , v. Nostrand (1964) MR0164867 Zbl 1173.03001 Zbl 0915.03002 Zbl 0681.03001 Zbl 0534.03001 Zbl 0498.03001 Zbl 0192.01901

Comments

References

[a1] S.C. Kleene, "Introduction to metamathematics" , North-Holland (1950) pp. Chapt. VII, §35 MR1234051 MR1570642 MR0051790 Zbl 0875.03002 Zbl 0604.03002 Zbl 0109.00509 Zbl 0047.00703
[a2] R. Fraissé, "Course of mathematical logic" , 1 , Reidel (1973) pp. Sect. 5.1.1ff MR0345784 Zbl 0262.02001
How to Cite This Entry:
Prenex formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Prenex_formula&oldid=15542
This article was adapted from an original article by V.N. Grishin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article