Namespaces
Variants
Actions

Difference between revisions of "Positive-definite operator"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A [[Symmetric operator|symmetric operator]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073910/p0739101.png" /> on a [[Hilbert space|Hilbert space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073910/p0739102.png" /> such that
+
<!--
 +
p0739101.png
 +
$#A+1 = 11 n = 0
 +
$#C+1 = 11 : ~/encyclopedia/old_files/data/P073/P.0703910 Positive\AAhdefinite operator
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073910/p0739103.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073910/p0739104.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073910/p0739105.png" />. Any positive-definite operator is a [[Positive operator|positive operator]].
+
A [[Symmetric operator|symmetric operator]]  $  A $
 +
on a [[Hilbert space|Hilbert space]] $  H $
 +
such that
  
 +
$$
 +
\inf 
 +
\frac{\langle  Ax, x \rangle }{\langle  x, x \rangle }
 +
  >  0
 +
$$
  
 +
for any  $  x \in H $,
 +
$  x \neq 0 $.
 +
Any positive-definite operator is a [[Positive operator|positive operator]].
  
 
====Comments====
 
====Comments====
More generally, a positive-definite operator is defined as a bounded symmetric (i.e. self-adjoint) operator such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073910/p0739106.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073910/p0739107.png" />. This includes the diagonal operator, which acts on a basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073910/p0739108.png" /> of a Hilbert space as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073910/p0739109.png" />. A non-negative-definite operator is one for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073910/p07391010.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073910/p07391011.png" />, cf. [[#References|[a2]]]. Sometimes a non-negative-definite operator is called a [[Positive operator|positive operator]].
+
More generally, a positive-definite operator is defined as a bounded symmetric (i.e. self-adjoint) operator such that $  \langle  Ax, x\rangle > 0 $
 +
for all $  x \neq 0 $.  
 +
This includes the diagonal operator, which acts on a basis $  ( e _ {n} ) _ {n=} 1  ^  \infty  $
 +
of a Hilbert space as $  Ae _ {n} = n  ^ {-} 1 e _ {n} $.  
 +
A non-negative-definite operator is one for which $  \langle  Ax, x \rangle \geq  0 $
 +
for all $  x \in H $,  
 +
cf. [[#References|[a2]]]. Sometimes a non-negative-definite operator is called a [[Positive operator|positive operator]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E. Hille,  "Methods in classical and functional analysis" , Addison-Wesley  (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  N. Dunford,  J.T. Schwartz,  "Linear operators" , '''1–3''' , Interscience  (1958–1971)  pp. 906</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E. Hille,  "Methods in classical and functional analysis" , Addison-Wesley  (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  N. Dunford,  J.T. Schwartz,  "Linear operators" , '''1–3''' , Interscience  (1958–1971)  pp. 906</TD></TR></table>

Latest revision as of 08:07, 6 June 2020


A symmetric operator $ A $ on a Hilbert space $ H $ such that

$$ \inf \frac{\langle Ax, x \rangle }{\langle x, x \rangle } > 0 $$

for any $ x \in H $, $ x \neq 0 $. Any positive-definite operator is a positive operator.

Comments

More generally, a positive-definite operator is defined as a bounded symmetric (i.e. self-adjoint) operator such that $ \langle Ax, x\rangle > 0 $ for all $ x \neq 0 $. This includes the diagonal operator, which acts on a basis $ ( e _ {n} ) _ {n=} 1 ^ \infty $ of a Hilbert space as $ Ae _ {n} = n ^ {-} 1 e _ {n} $. A non-negative-definite operator is one for which $ \langle Ax, x \rangle \geq 0 $ for all $ x \in H $, cf. [a2]. Sometimes a non-negative-definite operator is called a positive operator.

References

[a1] E. Hille, "Methods in classical and functional analysis" , Addison-Wesley (1972)
[a2] N. Dunford, J.T. Schwartz, "Linear operators" , 1–3 , Interscience (1958–1971) pp. 906
How to Cite This Entry:
Positive-definite operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Positive-definite_operator&oldid=18058
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article