Difference between revisions of "Positive-definite function"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | p0738901.png | ||
+ | $#A+1 = 83 n = 1 | ||
+ | $#C+1 = 83 : ~/encyclopedia/old_files/data/P073/P.0703890 Positive\AAhdefinite function | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A complex-valued function $ \phi $ | |
+ | on a group $ G $ | ||
+ | satisfying | ||
− | + | $$ | |
+ | \sum _ {i,j= 1 } ^ { m } \alpha _ {i} \overline \alpha \; _ {j} \phi ( x _ {j} ^ {-} 1 x _ {i} ) \geq 0 | ||
+ | $$ | ||
− | + | for all choices $ x _ {1} \dots x _ {m} \in G $, | |
+ | $ \alpha _ {1} \dots \alpha _ {m} \in \mathbf C $. | ||
+ | The set of positive-definite functions on $ G $ | ||
+ | forms a cone in the space $ M( G) $ | ||
+ | of all bounded functions on $ G $ | ||
+ | which is closed with respect to the operations of multiplication and complex conjugation. | ||
− | + | The reason for distinguishing this class of functions is that positive-definite functions define positive functionals (cf. [[Positive functional|Positive functional]]) on the group algebra $ \mathbf C G $ | |
+ | and unitary representations of the group $ G $( | ||
+ | cf. [[Unitary representation|Unitary representation]]). More precisely, let $ \phi : G \rightarrow \mathbf C $ | ||
+ | be any function and let $ l _ \phi : \mathbf C G\rightarrow \mathbf C $ | ||
+ | be the functional given by | ||
− | + | $$ | |
+ | l _ \phi \left ( \sum _ {g \in G } \alpha _ {g} g \right ) = \ | ||
+ | \sum _ {g \in G } \phi ( g) \alpha _ {g} ; | ||
+ | $$ | ||
− | + | then for $ l _ \phi $ | |
+ | to be positive it is necessary and sufficient that $ \phi $ | ||
+ | be a positive-definite function. Further, $ l _ \phi $ | ||
+ | defines a $ * $- | ||
+ | representation of the algebra $ \mathbf C G $ | ||
+ | on a Hilbert space $ H _ \phi $, | ||
+ | and therefore a unitary representation $ \pi _ \phi $ | ||
+ | of the group $ G $, | ||
+ | where $ \phi ( g) = ( \pi _ \phi ( g) \xi , \xi ) $ | ||
+ | for some $ \xi \in H _ \phi $. | ||
+ | Conversely, for any representation $ \pi $ | ||
+ | and any vector $ \xi \in H _ \phi $, | ||
+ | the function $ g \rightarrow ( \pi ( g) \xi , \xi ) $ | ||
+ | is a positive-definite function. | ||
− | + | If $ G $ | |
+ | is a topological group, the representation $ \pi _ \phi $ | ||
+ | is weakly continuous if and only if the positive-definite function is continuous. If $ G $ | ||
+ | is locally compact, continuous positive-definite functions are in one-to-one correspondence with the positive functionals on $ L _ {1} ( G) $. | ||
− | for | + | For commutative locally compact groups, the class of continuous positive-definite functions coincides with the class of Fourier transforms of finite positive regular Borel measures on the dual group. There is an analogue of this assertion for compact groups: A continuous function $ \phi $ |
+ | on a compact group $ G $ | ||
+ | is a positive-definite function if and only if its Fourier transform $ \widehat \phi ( b) $ | ||
+ | takes positive (operator) values on each element of the dual object, i.e. | ||
+ | |||
+ | $$ | ||
+ | \int\limits _ { G } \phi ( g) ( \sigma ( g) \xi , \xi ) dg \geq 0 | ||
+ | $$ | ||
+ | |||
+ | for any representation $ \sigma $ | ||
+ | and any vector $ \xi \in H _ \sigma $, | ||
+ | where $ H _ \sigma $ | ||
+ | is the space of $ \sigma $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Hewitt, K.A. Ross, "Abstract harmonic analysis" , '''2''' , Springer (1979)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.A. Naimark, "Normed rings" , Reidel (1984) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Hewitt, K.A. Ross, "Abstract harmonic analysis" , '''2''' , Springer (1979)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.A. Naimark, "Normed rings" , Reidel (1984) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The representations of | + | The representations of $ \mathbf C G $ |
+ | associated to positive functionals $ l $ | ||
+ | mentioned above are cyclic representations. A cyclic representation of a $ C ^ {*} $- | ||
+ | algebra $ {\mathcal A} $ | ||
+ | is a representation $ \rho : {\mathcal A} \rightarrow B( H) $, | ||
+ | the $ C ^ {*} $- | ||
+ | algebra of bounded operators on the Hilbert space $ H $, | ||
+ | such that there is a vector $ \xi \in H $ | ||
+ | such that the closure of $ \{ {A \xi } : {A \in {\mathcal A} } \} $ | ||
+ | is all of $ H $. | ||
+ | These are the basic components of any representation. Indeed, if $ \rho $ | ||
+ | is non-degenerate, i.e. $ \{ {\xi \in H } : {\rho ( A) ( \xi ) = 0 \textrm{ for all } A \in {\mathcal A} } \} = 0 $, | ||
+ | then $ \rho $ | ||
+ | is a direct sum of cyclic representations. Cf. also [[Cyclic module|Cyclic module]] for an analogous concept in ring and module theory. | ||
− | The cyclic representation associated to a positive functional | + | The cyclic representation associated to a positive functional $ l $ |
+ | on $ {\mathcal A} $ | ||
+ | is a suitably completed quotient of the regular representation. More precisely, the construction is as follows. Define an inner product on $ {\mathcal A} $ | ||
+ | by | ||
− | + | $$ | |
+ | \langle A, B \rangle = l ( A ^ {*} B ) , | ||
+ | $$ | ||
− | and define a left ideal of | + | and define a left ideal of $ {\mathcal A} $ |
+ | by | ||
− | + | $$ | |
+ | {\mathcal I} = \{ {A \in {\mathcal A} } : {l( A ^ {*} A ) = 0 } \} | ||
+ | . | ||
+ | $$ | ||
− | The inner product just defined descends to define an inner product on the quotient space | + | The inner product just defined descends to define an inner product on the quotient space $ {\mathcal A} / {\mathcal I} $. |
+ | Now complete this space to obtain a Hilbert space $ H _ {l} $, | ||
+ | and define the representation $ \pi _ {l} $ | ||
+ | by: | ||
− | + | $$ | |
+ | \pi _ {l} ( A) ([ B ]) \simeq [ AB], | ||
+ | $$ | ||
− | where | + | where $ [ B] $ |
+ | denotes the class of $ B \in {\mathcal A} $ | ||
+ | in $ {\mathcal A} / {\mathcal I} \subset H _ {l} $. | ||
+ | The operator $ \pi _ {l} ( A) $ | ||
+ | extends to a bounded operator on $ H _ {l} $. | ||
− | If | + | If $ {\mathcal A} $ |
+ | contains an identity, then the class of that identity is a cyclic vector for $ \pi _ {l} $. | ||
+ | If $ {\mathcal A} $ | ||
+ | does not contain an identity, such is first adjoined to obtain a $ C ^ {*} $- | ||
+ | algebra $ {\mathcal A} tilde $ | ||
+ | and the construction is repeated for $ {\mathcal A} tilde $. | ||
+ | To prove that then the class of 1 is cyclic for $ {\mathcal A} $( | ||
+ | not just $ {\mathcal A} tilde $) | ||
+ | one uses an approximate identity for $ {\mathcal I} $, | ||
+ | i.e. a [[Net (directed set)|net (directed set)]] $ \{ E _ \alpha \} $ | ||
+ | of positive elements $ E _ \alpha \in {\mathcal I} $ | ||
+ | such that $ \| E _ \alpha \| \leq 1 $, | ||
+ | $ \alpha \leq \beta $ | ||
+ | implies $ E _ \alpha \leq E _ \beta $ | ||
+ | and $ \lim\limits _ \alpha \| AE _ \alpha - A \| = 0 $ | ||
+ | for all $ A \in {\mathcal I} $. | ||
+ | Such approximate identities always exist. See e.g. [[#References|[1]]], vol. 1, p. 321 and [[#References|[a5]]], Sects. 2.2.3, 2.3.1 and 2.3.3 for more details on all this. | ||
− | A positive functional on a | + | A positive functional on a $ C ^ {*} $- |
+ | algebra of norm 1 is often called a state, especially in the theoretical physics literature. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Bochner, "Lectures on Fourier integrals" , Princeton Univ. Press (1959) (Translated from German)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Rudin, "Fourier analysis on groups" , Wiley (1962)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H. Reiter, "Classical harmonic analysis and locally compact groups" , Clarendon Press (1968)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J. Dixmier, "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073890/p07389087.png" /> algebras" , North-Holland (1977) (Translated from French)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> O. Bratteli, D.W. Robinson, "Operator algebras and quantum statistical mechanics" , '''1''' , Springer (1979)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Bochner, "Lectures on Fourier integrals" , Princeton Univ. Press (1959) (Translated from German)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Rudin, "Fourier analysis on groups" , Wiley (1962)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H. Reiter, "Classical harmonic analysis and locally compact groups" , Clarendon Press (1968)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J. Dixmier, "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073890/p07389087.png" /> algebras" , North-Holland (1977) (Translated from French)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> O. Bratteli, D.W. Robinson, "Operator algebras and quantum statistical mechanics" , '''1''' , Springer (1979)</TD></TR></table> |
Revision as of 08:07, 6 June 2020
A complex-valued function $ \phi $
on a group $ G $
satisfying
$$ \sum _ {i,j= 1 } ^ { m } \alpha _ {i} \overline \alpha \; _ {j} \phi ( x _ {j} ^ {-} 1 x _ {i} ) \geq 0 $$
for all choices $ x _ {1} \dots x _ {m} \in G $, $ \alpha _ {1} \dots \alpha _ {m} \in \mathbf C $. The set of positive-definite functions on $ G $ forms a cone in the space $ M( G) $ of all bounded functions on $ G $ which is closed with respect to the operations of multiplication and complex conjugation.
The reason for distinguishing this class of functions is that positive-definite functions define positive functionals (cf. Positive functional) on the group algebra $ \mathbf C G $ and unitary representations of the group $ G $( cf. Unitary representation). More precisely, let $ \phi : G \rightarrow \mathbf C $ be any function and let $ l _ \phi : \mathbf C G\rightarrow \mathbf C $ be the functional given by
$$ l _ \phi \left ( \sum _ {g \in G } \alpha _ {g} g \right ) = \ \sum _ {g \in G } \phi ( g) \alpha _ {g} ; $$
then for $ l _ \phi $ to be positive it is necessary and sufficient that $ \phi $ be a positive-definite function. Further, $ l _ \phi $ defines a $ * $- representation of the algebra $ \mathbf C G $ on a Hilbert space $ H _ \phi $, and therefore a unitary representation $ \pi _ \phi $ of the group $ G $, where $ \phi ( g) = ( \pi _ \phi ( g) \xi , \xi ) $ for some $ \xi \in H _ \phi $. Conversely, for any representation $ \pi $ and any vector $ \xi \in H _ \phi $, the function $ g \rightarrow ( \pi ( g) \xi , \xi ) $ is a positive-definite function.
If $ G $ is a topological group, the representation $ \pi _ \phi $ is weakly continuous if and only if the positive-definite function is continuous. If $ G $ is locally compact, continuous positive-definite functions are in one-to-one correspondence with the positive functionals on $ L _ {1} ( G) $.
For commutative locally compact groups, the class of continuous positive-definite functions coincides with the class of Fourier transforms of finite positive regular Borel measures on the dual group. There is an analogue of this assertion for compact groups: A continuous function $ \phi $ on a compact group $ G $ is a positive-definite function if and only if its Fourier transform $ \widehat \phi ( b) $ takes positive (operator) values on each element of the dual object, i.e.
$$ \int\limits _ { G } \phi ( g) ( \sigma ( g) \xi , \xi ) dg \geq 0 $$
for any representation $ \sigma $ and any vector $ \xi \in H _ \sigma $, where $ H _ \sigma $ is the space of $ \sigma $.
References
[1] | E. Hewitt, K.A. Ross, "Abstract harmonic analysis" , 2 , Springer (1979) |
[2] | M.A. Naimark, "Normed rings" , Reidel (1984) (Translated from Russian) |
Comments
The representations of $ \mathbf C G $ associated to positive functionals $ l $ mentioned above are cyclic representations. A cyclic representation of a $ C ^ {*} $- algebra $ {\mathcal A} $ is a representation $ \rho : {\mathcal A} \rightarrow B( H) $, the $ C ^ {*} $- algebra of bounded operators on the Hilbert space $ H $, such that there is a vector $ \xi \in H $ such that the closure of $ \{ {A \xi } : {A \in {\mathcal A} } \} $ is all of $ H $. These are the basic components of any representation. Indeed, if $ \rho $ is non-degenerate, i.e. $ \{ {\xi \in H } : {\rho ( A) ( \xi ) = 0 \textrm{ for all } A \in {\mathcal A} } \} = 0 $, then $ \rho $ is a direct sum of cyclic representations. Cf. also Cyclic module for an analogous concept in ring and module theory.
The cyclic representation associated to a positive functional $ l $ on $ {\mathcal A} $ is a suitably completed quotient of the regular representation. More precisely, the construction is as follows. Define an inner product on $ {\mathcal A} $ by
$$ \langle A, B \rangle = l ( A ^ {*} B ) , $$
and define a left ideal of $ {\mathcal A} $ by
$$ {\mathcal I} = \{ {A \in {\mathcal A} } : {l( A ^ {*} A ) = 0 } \} . $$
The inner product just defined descends to define an inner product on the quotient space $ {\mathcal A} / {\mathcal I} $. Now complete this space to obtain a Hilbert space $ H _ {l} $, and define the representation $ \pi _ {l} $ by:
$$ \pi _ {l} ( A) ([ B ]) \simeq [ AB], $$
where $ [ B] $ denotes the class of $ B \in {\mathcal A} $ in $ {\mathcal A} / {\mathcal I} \subset H _ {l} $. The operator $ \pi _ {l} ( A) $ extends to a bounded operator on $ H _ {l} $.
If $ {\mathcal A} $ contains an identity, then the class of that identity is a cyclic vector for $ \pi _ {l} $. If $ {\mathcal A} $ does not contain an identity, such is first adjoined to obtain a $ C ^ {*} $- algebra $ {\mathcal A} tilde $ and the construction is repeated for $ {\mathcal A} tilde $. To prove that then the class of 1 is cyclic for $ {\mathcal A} $( not just $ {\mathcal A} tilde $) one uses an approximate identity for $ {\mathcal I} $, i.e. a net (directed set) $ \{ E _ \alpha \} $ of positive elements $ E _ \alpha \in {\mathcal I} $ such that $ \| E _ \alpha \| \leq 1 $, $ \alpha \leq \beta $ implies $ E _ \alpha \leq E _ \beta $ and $ \lim\limits _ \alpha \| AE _ \alpha - A \| = 0 $ for all $ A \in {\mathcal I} $. Such approximate identities always exist. See e.g. [1], vol. 1, p. 321 and [a5], Sects. 2.2.3, 2.3.1 and 2.3.3 for more details on all this.
A positive functional on a $ C ^ {*} $- algebra of norm 1 is often called a state, especially in the theoretical physics literature.
References
[a1] | S. Bochner, "Lectures on Fourier integrals" , Princeton Univ. Press (1959) (Translated from German) |
[a2] | W. Rudin, "Fourier analysis on groups" , Wiley (1962) |
[a3] | H. Reiter, "Classical harmonic analysis and locally compact groups" , Clarendon Press (1968) |
[a4] | J. Dixmier, " algebras" , North-Holland (1977) (Translated from French) |
[a5] | O. Bratteli, D.W. Robinson, "Operator algebras and quantum statistical mechanics" , 1 , Springer (1979) |
Positive-definite function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Positive-definite_function&oldid=19269