Difference between revisions of "Pontryagin surface"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | A | + | <!-- |
| + | p0738201.png | ||
| + | $#A+1 = 31 n = 0 | ||
| + | $#C+1 = 31 : ~/encyclopedia/old_files/data/P073/P.0703820 Pontryagin surface | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
| + | A two-dimensional continuum $ C _ {m} $, | ||
| + | $ \mathop{\rm dim} C _ {m} = 2 $, | ||
| + | in the four-dimensional Euclidean space $ \mathbf R ^ {4} $ | ||
| + | such that its [[Homological dimension|homological dimension]] modulo the given $ m = 2 , 3 \dots $ | ||
| + | is $ 1 $. | ||
| + | In this sense these continua are "dimensionally deficient" . L.S. Pontryagin [[#References|[1]]] has constructed surfaces $ C _ {2} , C _ {3} $ | ||
| + | such that their topological product $ C = C _ {2} \times C _ {3} $ | ||
| + | is a continuum of dimension $ 3 $. | ||
| + | Thus, the conjecture stating that under topological multiplication of two (metric) compacta their dimensions are added, was disproved. He proved this conjecture for homological dimensions modulo a prime number and, in general, over any group of coefficients which is a field. In [[#References|[2]]] a two-dimensional continuum $ C $ | ||
| + | in $ \mathbf R ^ {4} $ | ||
| + | has been constructed whose topological square $ C ^ {2} = C \times C $ | ||
| + | is three-dimensional. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.S. Pontryagin, "Sur une hypothèse fundamentale de la théorie de la dimension" ''C.R. Acad. Sci. Paris'' , '''190''' (1930) pp. 1105–1107</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.G. Boltyanskii, "On a theorem concerning addition of dimension" ''Uspekhi Mat. Nauk'' , '''6''' : 3 (1951) pp. 99–128 (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P.S. Aleksandrov, "An introduction to homological dimension theory and general combinatorial topology" , Moscow (1975) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.S. Pontryagin, "Sur une hypothèse fundamentale de la théorie de la dimension" ''C.R. Acad. Sci. Paris'' , '''190''' (1930) pp. 1105–1107</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.G. Boltyanskii, "On a theorem concerning addition of dimension" ''Uspekhi Mat. Nauk'' , '''6''' : 3 (1951) pp. 99–128 (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P.S. Aleksandrov, "An introduction to homological dimension theory and general combinatorial topology" , Moscow (1975) (In Russian)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | In fact, Pontryagin constructed a sequence of surfaces | + | In fact, Pontryagin constructed a sequence of surfaces $ P _ {n} $, |
| + | each of dimension 2, with $ P _ {n} \times P _ {n} $ | ||
| + | $ 4 $- | ||
| + | dimensional, but $ P _ {m} \times P _ {n} $ | ||
| + | $ 3 $- | ||
| + | dimensional if $ m \neq n $; | ||
| + | and these surfaces exhibit all possibilities in the sense that if a metric continuum $ X $ | ||
| + | satisfies $ \mathop{\rm dim} ( X \times P _ {n} ) = \mathop{\rm dim} X+ 2 $ | ||
| + | for all $ n $, | ||
| + | then $ \mathop{\rm dim} ( X \times Y) = \mathop{\rm dim} X + \mathop{\rm dim} Y $ | ||
| + | for all metric continua $ Y $. | ||
| + | V.G. Boltyan'skii constructed $ 2 $- | ||
| + | dimensional continua $ B _ {n} $ | ||
| + | with the opposite behaviour, $ \mathop{\rm dim} ( B _ {n} \times B _ {n} ) = 3 $ | ||
| + | but $ \mathop{\rm dim} ( B _ {m} \times B _ {n} ) = 4 $ | ||
| + | for $ m \neq n $; | ||
| + | and these surfaces exhibit all possibilities, in the same sense. | ||
| − | Recently A.N. Dranishnikov showed that there even exist dimensionally-deficient absolute neighbourhood retracts (cf. e.g. [[Absolute retract for normal spaces|Absolute retract for normal spaces]]; [[Retract of a topological space|Retract of a topological space]]). His examples | + | Recently A.N. Dranishnikov showed that there even exist dimensionally-deficient absolute neighbourhood retracts (cf. e.g. [[Absolute retract for normal spaces|Absolute retract for normal spaces]]; [[Retract of a topological space|Retract of a topological space]]). His examples $ D _ {n} $ |
| + | are $ 4 $- | ||
| + | dimensional with $ \mathop{\rm dim} ( D _ {m} \times D _ {n} ) = 7 $ | ||
| + | for $ m \neq n $[[#References|[a1]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.N. Dranishnikov, "Homological dimension theory" ''Russian Math. Surveys'' , '''43''' : 4 (1988) pp. 11–63 ''Uspekhi Mat. Nauk'' , '''43''' : 4 (1988) pp. 11–55</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.N. Dranishnikov, "Homological dimension theory" ''Russian Math. Surveys'' , '''43''' : 4 (1988) pp. 11–63 ''Uspekhi Mat. Nauk'' , '''43''' : 4 (1988) pp. 11–55</TD></TR></table> | ||
Latest revision as of 08:07, 6 June 2020
A two-dimensional continuum $ C _ {m} $,
$ \mathop{\rm dim} C _ {m} = 2 $,
in the four-dimensional Euclidean space $ \mathbf R ^ {4} $
such that its homological dimension modulo the given $ m = 2 , 3 \dots $
is $ 1 $.
In this sense these continua are "dimensionally deficient" . L.S. Pontryagin [1] has constructed surfaces $ C _ {2} , C _ {3} $
such that their topological product $ C = C _ {2} \times C _ {3} $
is a continuum of dimension $ 3 $.
Thus, the conjecture stating that under topological multiplication of two (metric) compacta their dimensions are added, was disproved. He proved this conjecture for homological dimensions modulo a prime number and, in general, over any group of coefficients which is a field. In [2] a two-dimensional continuum $ C $
in $ \mathbf R ^ {4} $
has been constructed whose topological square $ C ^ {2} = C \times C $
is three-dimensional.
References
| [1] | L.S. Pontryagin, "Sur une hypothèse fundamentale de la théorie de la dimension" C.R. Acad. Sci. Paris , 190 (1930) pp. 1105–1107 |
| [2] | V.G. Boltyanskii, "On a theorem concerning addition of dimension" Uspekhi Mat. Nauk , 6 : 3 (1951) pp. 99–128 (In Russian) |
| [3] | P.S. Aleksandrov, "An introduction to homological dimension theory and general combinatorial topology" , Moscow (1975) (In Russian) |
Comments
In fact, Pontryagin constructed a sequence of surfaces $ P _ {n} $, each of dimension 2, with $ P _ {n} \times P _ {n} $ $ 4 $- dimensional, but $ P _ {m} \times P _ {n} $ $ 3 $- dimensional if $ m \neq n $; and these surfaces exhibit all possibilities in the sense that if a metric continuum $ X $ satisfies $ \mathop{\rm dim} ( X \times P _ {n} ) = \mathop{\rm dim} X+ 2 $ for all $ n $, then $ \mathop{\rm dim} ( X \times Y) = \mathop{\rm dim} X + \mathop{\rm dim} Y $ for all metric continua $ Y $. V.G. Boltyan'skii constructed $ 2 $- dimensional continua $ B _ {n} $ with the opposite behaviour, $ \mathop{\rm dim} ( B _ {n} \times B _ {n} ) = 3 $ but $ \mathop{\rm dim} ( B _ {m} \times B _ {n} ) = 4 $ for $ m \neq n $; and these surfaces exhibit all possibilities, in the same sense.
Recently A.N. Dranishnikov showed that there even exist dimensionally-deficient absolute neighbourhood retracts (cf. e.g. Absolute retract for normal spaces; Retract of a topological space). His examples $ D _ {n} $ are $ 4 $- dimensional with $ \mathop{\rm dim} ( D _ {m} \times D _ {n} ) = 7 $ for $ m \neq n $[a1].
References
| [a1] | A.N. Dranishnikov, "Homological dimension theory" Russian Math. Surveys , 43 : 4 (1988) pp. 11–63 Uspekhi Mat. Nauk , 43 : 4 (1988) pp. 11–55 |
Pontryagin surface. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pontryagin_surface&oldid=15269