Namespaces
Variants
Actions

Difference between revisions of "Pontryagin number"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A [[Characteristic number|characteristic number]] defined for closed oriented manifolds and assuming rational values. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p0737901.png" /> be an arbitrary (not necessarily homogeneous) stable [[Characteristic class|characteristic class]]. For a closed oriented manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p0737902.png" /> the rational number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p0737903.png" /> is called the Pontryagin number of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p0737904.png" /> corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p0737905.png" />; here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p0737906.png" /> is the tangent bundle and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p0737907.png" /> is the [[Fundamental class|fundamental class]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p0737908.png" />. The Pontryagin number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p0737909.png" /> depends only on the homogeneous component of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379010.png" /> of the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379011.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379012.png" /> be a partition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379013.png" />, i.e. a set of non-negative integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379014.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379015.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379016.png" />. The rational numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379017.png" /> are defined for a closed manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379018.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379019.png" /> and all partitions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379020.png" /> of the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379021.png" />.
+
<!--
 +
p0737901.png
 +
$#A+1 = 64 n = 0
 +
$#C+1 = 64 : ~/encyclopedia/old_files/data/P073/P.0703790 Pontryagin number
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The Pontryagin numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379022.png" /> of two bordant (in the oriented sense, cf. [[Bordism|Bordism]]) manifolds <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379023.png" /> are equal: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379024.png" /> (Pontryagin's theorem).
+
{{TEX|auto}}
 +
{{TEX|done}}
  
According to this theorem each characteristic class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379025.png" /> induces a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379026.png" />, and each element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379027.png" /> induces a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379029.png" />. In other words, there is a mapping
+
A [[Characteristic number|characteristic number]] defined for closed oriented manifolds and assuming rational values. Let  $  x \in H  ^ {**} (  \mathop{\rm BO} ;  \mathbf Q ) $
 +
be an arbitrary (not necessarily homogeneous) stable [[Characteristic class|characteristic class]]. For a closed oriented manifold  $  M $
 +
the rational number  $  x [ M ] = \langle  x ( \tau M ) , [ M] \rangle $
 +
is called the Pontryagin number of  $  M $
 +
corresponding to  $  x $;
 +
here  $  \tau M $
 +
is the tangent bundle and  $  [ M] $
 +
is the [[Fundamental class|fundamental class]] of  $  M $.  
 +
The Pontryagin number  $  x [ M] $
 +
depends only on the homogeneous component of degree  $  \mathop{\rm dim}  M $
 +
of the class  $  x $.  
 +
Let  $  \omega = \{ i _ {1} \dots i _ {k} \} $
 +
be a partition of  $  n $,  
 +
i.e. a set of non-negative integers  $  i _ {1} \dots i _ {k} $
 +
such that  $  i _ {1} + \dots + i _ {k} = n $
 +
and let  $  p _  \omega  = p _ {i _ {1}  } \dots p _ {i _ {k}  } \in H  ^ {4n} (  \mathop{\rm BO} ) $.  
 +
The rational numbers  $  p _  \omega  [ M] $
 +
are defined for a closed manifold  $  M $
 +
of dimension  $  4n $
 +
and all partitions  $  \omega $
 +
of the number  $  n $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379030.png" /></td> </tr></table>
+
The Pontryagin numbers  $  x[ M] , x [ N] $
 +
of two bordant (in the oriented sense, cf. [[Bordism|Bordism]]) manifolds  $  M , N $
 +
are equal:  $  x [ M] = x [ N] $(
 +
Pontryagin's theorem).
 +
 
 +
According to this theorem each characteristic class $  x \in H  ^ {**} (  \mathop{\rm BO} ;  \mathbf Q ) $
 +
induces a homomorphism  $  x [ {} ] : \Omega _ {*} ^ { \mathop{\rm SO} } \rightarrow \mathbf Q $,
 +
and each element  $  [ M] \in \Omega _ {*} ^ { \mathop{\rm SO} } $
 +
induces a homomorphism  $  H  ^ {**} (  \mathop{\rm BO} ; \mathbf Q ) \rightarrow \mathbf Q $,
 +
$  x \rightarrow x [ M] $.
 +
In other words, there is a mapping
 +
 
 +
$$
 +
\phi : \Omega _ {*} ^ { \mathop{\rm SO} }  \rightarrow  \mathop{\rm Hom} ( H  ^ {**}
 +
(  \mathop{\rm BO} ; \mathbf Q ) ; \mathbf Q ) .
 +
$$
  
 
If all Pontryagin numbers and Stiefel numbers (cf. [[Stiefel number|Stiefel number]]) of two oriented closed manifolds coincide, then these manifolds are bordant (in the oriented sense).
 
If all Pontryagin numbers and Stiefel numbers (cf. [[Stiefel number|Stiefel number]]) of two oriented closed manifolds coincide, then these manifolds are bordant (in the oriented sense).
  
A problem similar to the Milnor–Hirzebruch problem for quasi-complex manifolds consists in describing the image of the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379031.png" />. The solution of this problem is based on the consideration of Pontryagin numbers in [[K-theory|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379032.png" />-theory]] corresponding to the Pontryagin classes (cf. [[Pontryagin class|Pontryagin class]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379033.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379034.png" />-theory. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379035.png" /> be a set of non-negative integers, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379037.png" /> be the characteristic classes defined by the symmetric series
+
A problem similar to the Milnor–Hirzebruch problem for quasi-complex manifolds consists in describing the image of the mapping $  \phi $.  
 +
The solution of this problem is based on the consideration of Pontryagin numbers in [[K-theory| $  K $-
 +
theory]] corresponding to the Pontryagin classes (cf. [[Pontryagin class|Pontryagin class]]) $  \pi _ {i} $
 +
in $  K $-
 +
theory. Let $  \omega = \{ i _ {1} \dots i _ {n} \} $
 +
be a set of non-negative integers, let $  S _  \omega  ( p) $
 +
and $  S _  \omega  ( e _ {p} ) $
 +
be the characteristic classes defined by the symmetric series
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379038.png" /></td> </tr></table>
+
$$
 +
S  ^  \omega  ( x _ {1}  ^ {2} \dots x _ {n}  ^ {2} )  \textrm{ and } \
 +
S  ^  \omega  ( e ^ {x _ {1} } + e ^ {- x _ {1} } - 2 \dots
 +
e ^ {x _ {n} } + e ^ {- x _ {n} } - 2 ) ,
 +
$$
  
respectively; here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379039.png" /> is the minimal symmetric polynomial containing the monomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379040.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379041.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379042.png" /> be a set of homomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379043.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379044.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379045.png" /> for all tuples <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379046.png" />. Then the image of the homomorphism
+
respectively; here $  S  ^  \omega  ( t _ {1} \dots t _ {n} ) $
 +
is the minimal symmetric polynomial containing the monomials $  t _ {1} ^ {i _ {1} } \dots t _ {k} ^ {i _ {k} } $,  
 +
$  n \geq  i _ {1} + \dots + i _ {k} $.  
 +
Let $  B _ {*} \subset  \mathop{\rm Hom} ( H  ^ {**} (  \mathop{\rm BO} ;  \mathbf Q );  \mathbf Q ) $
 +
be a set of homomorphisms $  b : H  ^ {**} (  \mathop{\rm BO} ; \mathbf Q ) \rightarrow \mathbf Q $
 +
for which $  b ( S _  \omega  ( p) ) \in \mathbf Z $,  
 +
$  b ( S _  \omega  ( e _ {p} ) L ) \in \mathbf Z [ 1/2] $
 +
for all tuples $  \omega $.  
 +
Then the image of the homomorphism
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379047.png" /></td> </tr></table>
+
$$
 +
\phi : \Omega _ {*} ^ { \mathop{\rm SO} }  \rightarrow  \mathop{\rm Hom} ( H  ^ {**}
 +
(  \mathop{\rm BO} ; \mathbf Q ) ; \mathbf Q )
 +
$$
  
coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379048.png" /> (the Stong–Hattori theorem).
+
coincides with $  B _ {*} $(
 +
the Stong–Hattori theorem).
  
The characteristic numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379049.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379050.png" /> corresponding to the classes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379051.png" /> are called the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379053.png" />-genus and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379055.png" />-genus of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379056.png" />, respectively.
+
The characteristic numbers $  L [ M] $
 +
and $  \widehat{A}  [ M] $
 +
corresponding to the classes $  L , \widehat{A}  \in H  ^ {**} (  \mathop{\rm BO} ;  \mathbf Q ) $
 +
are called the $  L $-
 +
genus and the $  \widehat{A}  $-
 +
genus of $  M $,  
 +
respectively.
  
For a closed manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379057.png" /> of dimension divisible by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379058.png" /> the equality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379059.png" /> holds, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379060.png" /> is the [[Signature|signature]] of the manifold, i.e. the signature of the quadratic intersection form defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379061.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379062.png" /> (Hirzebruch's theorem). For a closed spin manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379063.png" /> of even dimension the spinor index of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379064.png" />, i.e. the index of the Dirac operator on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379065.png" />, coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379066.png" />.
+
For a closed manifold $  M $
 +
of dimension divisible by $  4 $
 +
the equality $  L [ M] = I ( M) $
 +
holds, where $  I ( M) $
 +
is the [[Signature|signature]] of the manifold, i.e. the signature of the quadratic intersection form defined on $  H _ {n/2} ( M) $,  
 +
$  n = \mathop{\rm dim}  M $(
 +
Hirzebruch's theorem). For a closed spin manifold $  M $
 +
of even dimension the spinor index of $  M $,  
 +
i.e. the index of the Dirac operator on $  M $,  
 +
coincides with $  \widehat{A}  [ M] $.
  
 
For references see [[Pontryagin class|Pontryagin class]].
 
For references see [[Pontryagin class|Pontryagin class]].

Latest revision as of 08:07, 6 June 2020


A characteristic number defined for closed oriented manifolds and assuming rational values. Let $ x \in H ^ {**} ( \mathop{\rm BO} ; \mathbf Q ) $ be an arbitrary (not necessarily homogeneous) stable characteristic class. For a closed oriented manifold $ M $ the rational number $ x [ M ] = \langle x ( \tau M ) , [ M] \rangle $ is called the Pontryagin number of $ M $ corresponding to $ x $; here $ \tau M $ is the tangent bundle and $ [ M] $ is the fundamental class of $ M $. The Pontryagin number $ x [ M] $ depends only on the homogeneous component of degree $ \mathop{\rm dim} M $ of the class $ x $. Let $ \omega = \{ i _ {1} \dots i _ {k} \} $ be a partition of $ n $, i.e. a set of non-negative integers $ i _ {1} \dots i _ {k} $ such that $ i _ {1} + \dots + i _ {k} = n $ and let $ p _ \omega = p _ {i _ {1} } \dots p _ {i _ {k} } \in H ^ {4n} ( \mathop{\rm BO} ) $. The rational numbers $ p _ \omega [ M] $ are defined for a closed manifold $ M $ of dimension $ 4n $ and all partitions $ \omega $ of the number $ n $.

The Pontryagin numbers $ x[ M] , x [ N] $ of two bordant (in the oriented sense, cf. Bordism) manifolds $ M , N $ are equal: $ x [ M] = x [ N] $( Pontryagin's theorem).

According to this theorem each characteristic class $ x \in H ^ {**} ( \mathop{\rm BO} ; \mathbf Q ) $ induces a homomorphism $ x [ {} ] : \Omega _ {*} ^ { \mathop{\rm SO} } \rightarrow \mathbf Q $, and each element $ [ M] \in \Omega _ {*} ^ { \mathop{\rm SO} } $ induces a homomorphism $ H ^ {**} ( \mathop{\rm BO} ; \mathbf Q ) \rightarrow \mathbf Q $, $ x \rightarrow x [ M] $. In other words, there is a mapping

$$ \phi : \Omega _ {*} ^ { \mathop{\rm SO} } \rightarrow \mathop{\rm Hom} ( H ^ {**} ( \mathop{\rm BO} ; \mathbf Q ) ; \mathbf Q ) . $$

If all Pontryagin numbers and Stiefel numbers (cf. Stiefel number) of two oriented closed manifolds coincide, then these manifolds are bordant (in the oriented sense).

A problem similar to the Milnor–Hirzebruch problem for quasi-complex manifolds consists in describing the image of the mapping $ \phi $. The solution of this problem is based on the consideration of Pontryagin numbers in $ K $- theory corresponding to the Pontryagin classes (cf. Pontryagin class) $ \pi _ {i} $ in $ K $- theory. Let $ \omega = \{ i _ {1} \dots i _ {n} \} $ be a set of non-negative integers, let $ S _ \omega ( p) $ and $ S _ \omega ( e _ {p} ) $ be the characteristic classes defined by the symmetric series

$$ S ^ \omega ( x _ {1} ^ {2} \dots x _ {n} ^ {2} ) \textrm{ and } \ S ^ \omega ( e ^ {x _ {1} } + e ^ {- x _ {1} } - 2 \dots e ^ {x _ {n} } + e ^ {- x _ {n} } - 2 ) , $$

respectively; here $ S ^ \omega ( t _ {1} \dots t _ {n} ) $ is the minimal symmetric polynomial containing the monomials $ t _ {1} ^ {i _ {1} } \dots t _ {k} ^ {i _ {k} } $, $ n \geq i _ {1} + \dots + i _ {k} $. Let $ B _ {*} \subset \mathop{\rm Hom} ( H ^ {**} ( \mathop{\rm BO} ; \mathbf Q ); \mathbf Q ) $ be a set of homomorphisms $ b : H ^ {**} ( \mathop{\rm BO} ; \mathbf Q ) \rightarrow \mathbf Q $ for which $ b ( S _ \omega ( p) ) \in \mathbf Z $, $ b ( S _ \omega ( e _ {p} ) L ) \in \mathbf Z [ 1/2] $ for all tuples $ \omega $. Then the image of the homomorphism

$$ \phi : \Omega _ {*} ^ { \mathop{\rm SO} } \rightarrow \mathop{\rm Hom} ( H ^ {**} ( \mathop{\rm BO} ; \mathbf Q ) ; \mathbf Q ) $$

coincides with $ B _ {*} $( the Stong–Hattori theorem).

The characteristic numbers $ L [ M] $ and $ \widehat{A} [ M] $ corresponding to the classes $ L , \widehat{A} \in H ^ {**} ( \mathop{\rm BO} ; \mathbf Q ) $ are called the $ L $- genus and the $ \widehat{A} $- genus of $ M $, respectively.

For a closed manifold $ M $ of dimension divisible by $ 4 $ the equality $ L [ M] = I ( M) $ holds, where $ I ( M) $ is the signature of the manifold, i.e. the signature of the quadratic intersection form defined on $ H _ {n/2} ( M) $, $ n = \mathop{\rm dim} M $( Hirzebruch's theorem). For a closed spin manifold $ M $ of even dimension the spinor index of $ M $, i.e. the index of the Dirac operator on $ M $, coincides with $ \widehat{A} [ M] $.

For references see Pontryagin class.

How to Cite This Entry:
Pontryagin number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pontryagin_number&oldid=13650
This article was adapted from an original article by A.F. Kharshiladze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article