Difference between revisions of "Poly-harmonic function"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | p0735102.png | ||
+ | $#A+1 = 35 n = 0 | ||
+ | $#C+1 = 35 : ~/encyclopedia/old_files/data/P073/P.0703510 Poly\AAhharmonic function, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | ''hyper-harmonic function, meta-harmonic function, of order $ m $'' | |
− | + | A function $ u( x) = u( x _ {1} \dots x _ {n} ) $ | |
+ | of real variables defined in a region $ D $ | ||
+ | of a Euclidean space $ \mathbf R ^ {n} $, | ||
+ | $ n \geq 2 $, | ||
+ | having continuous partial derivatives up to and including the order $ 2m $ | ||
+ | and satisfying the poly-harmonic equation everywhere in $ D $: | ||
− | + | $$ | |
+ | \Delta ^ {m} u \equiv \Delta ( \Delta \dots ( \Delta u)) = 0,\ m \geq 1, | ||
+ | $$ | ||
− | + | where $ \Delta $ | |
+ | is the [[Laplace operator|Laplace operator]]. For $ m = 1 $ | ||
+ | one obtains harmonic functions (cf. [[Harmonic function|Harmonic function]]), while for $ m= 2 $ | ||
+ | one obtains biharmonic functions (cf. [[Biharmonic function|Biharmonic function]]). Each poly-harmonic function is an analytic function of the coordinates $ x _ {j} $. | ||
+ | Some other properties of harmonic functions also carry over, with corresponding changes, to poly-harmonic functions. | ||
− | + | For poly-harmonic functions of any order $ m > 1 $, | |
+ | representations using harmonic functions are generalized to get results known for biharmonic functions [[#References|[1]]]–[[#References|[5]]]. For example, for a poly-harmonic function $ u $ | ||
+ | of two variables there is the representation | ||
− | + | $$ | |
+ | u( x _ {1} , x _ {2} ) = \ | ||
+ | \sum _ { k= } 0 ^ { m- } 1 r ^ {2k} \omega _ {k} ( x _ {1} , x _ {2} ),\ \ | ||
+ | r ^ {2} = x _ {1} ^ {2} + x _ {2} ^ {2} , | ||
+ | $$ | ||
− | + | where $ \omega _ {k} $, | |
+ | $ k = 0 \dots m- 1 $, | ||
+ | are harmonic functions in $ D $. | ||
+ | For a function $ u( x _ {1} , x _ {2} ) $ | ||
+ | of two variables to be a poly-harmonic function, it is necessary and sufficient that it be the real (or imaginary) part of a [[Poly-analytic function|poly-analytic function]]. | ||
− | + | The basic boundary value problem for a poly-harmonic function of order $ m > 1 $ | |
+ | is as follows: Find a poly-harmonic function $ u = u( x) $ | ||
+ | in a region $ D $ | ||
+ | that is continuous along with its derivatives up to and including the order $ m- 1 $ | ||
+ | in the closed region $ \overline{D}\; = D \cup C $ | ||
+ | and which satisfies the following conditions on the boundary $ C $: | ||
+ | |||
+ | $$ \tag{* } | ||
+ | \left . \begin{array}{c} | ||
+ | u \mid _ {C} = f _ {0} ( y), | ||
+ | \\ | ||
+ | |||
+ | \left . | ||
+ | \frac{\partial u }{\partial n } | ||
+ | \right | _ {C} = \ | ||
+ | f _ {1} ( y) \dots \left . | ||
+ | \frac{\partial ^ {m-} 1 u }{\partial n ^ {m-} 1 } | ||
+ | \right | _ {C} = \ | ||
+ | f _ {m-} 1 ( y),\ y \in C | ||
+ | \end{array} | ||
+ | \right \} , | ||
+ | $$ | ||
+ | |||
+ | where $ \partial u / \partial n $ | ||
+ | is the derivative along the normal to $ C $ | ||
+ | and $ f _ {0} ( y) \dots f _ {m-} 1 ( y) $ | ||
+ | are given sufficiently smooth functions on the sufficiently smooth boundary $ C $. | ||
+ | Many studies deal with solving problem (*) in the ball in $ \mathbf R ^ {n} $[[#References|[1]]], [[#References|[6]]]. To solve the problem (*) in the case of an arbitrary region, one uses methods of integral equations, as well as variational methods [[#References|[1]]], [[#References|[6]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.N. Vekua, "New methods for solving elliptic equations" , North-Holland (1967) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.I. Privalov, B.M. Pchelin, "Sur la théorie générale des fonctions polyharmoniques" ''C.R. Acad. Sci. Paris'' , '''204''' (1937) pp. 328–330 ''Mat. Sb.'' , '''2''' : 4 (1937) pp. 745–758</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Nicolesco, "Les fonctions poly-harmoniques" , Hermann (1936)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M. Nicolesco, "Nouvelles recherches sur les fonctions polyharmoniques" ''Disq. Math. Phys.'' , '''1''' (1940) pp. 43–56</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> C. Tolotti, "Sulla struttura delle funzioni iperarmoniche in pui variabili independenti" ''Giorn. Math. Battaglini'' , '''1''' (1947) pp. 61–117</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> C. Miranda, "Partial differential equations of elliptic type" , Springer (1970) (Translated from Italian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.N. Vekua, "New methods for solving elliptic equations" , North-Holland (1967) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.I. Privalov, B.M. Pchelin, "Sur la théorie générale des fonctions polyharmoniques" ''C.R. Acad. Sci. Paris'' , '''204''' (1937) pp. 328–330 ''Mat. Sb.'' , '''2''' : 4 (1937) pp. 745–758</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Nicolesco, "Les fonctions poly-harmoniques" , Hermann (1936)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M. Nicolesco, "Nouvelles recherches sur les fonctions polyharmoniques" ''Disq. Math. Phys.'' , '''1''' (1940) pp. 43–56</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> C. Tolotti, "Sulla struttura delle funzioni iperarmoniche in pui variabili independenti" ''Giorn. Math. Battaglini'' , '''1''' (1947) pp. 61–117</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> C. Miranda, "Partial differential equations of elliptic type" , Springer (1970) (Translated from Italian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | See [[#References|[a1]]] for an updated bibliography and for a slightly more general definition: | + | See [[#References|[a1]]] for an updated bibliography and for a slightly more general definition: $ u $ |
+ | is poly-harmonic on the domain $ \Omega $ | ||
+ | if $ [ {| \Delta ^ {n} u | } / {( 2n)! } ] ^ {n/2} \rightarrow 0 $ | ||
+ | locally uniformly on $ \Omega $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Aronszain, T.M. Creese, L.J. Lipkin, "Polyharmonic functions" , Clarendon Press (1983)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.R. Garabedian, "Partial differential equations" , Chelsea, reprint (1986)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Aronszain, T.M. Creese, L.J. Lipkin, "Polyharmonic functions" , Clarendon Press (1983)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.R. Garabedian, "Partial differential equations" , Chelsea, reprint (1986)</TD></TR></table> |
Revision as of 08:06, 6 June 2020
hyper-harmonic function, meta-harmonic function, of order $ m $
A function $ u( x) = u( x _ {1} \dots x _ {n} ) $ of real variables defined in a region $ D $ of a Euclidean space $ \mathbf R ^ {n} $, $ n \geq 2 $, having continuous partial derivatives up to and including the order $ 2m $ and satisfying the poly-harmonic equation everywhere in $ D $:
$$ \Delta ^ {m} u \equiv \Delta ( \Delta \dots ( \Delta u)) = 0,\ m \geq 1, $$
where $ \Delta $ is the Laplace operator. For $ m = 1 $ one obtains harmonic functions (cf. Harmonic function), while for $ m= 2 $ one obtains biharmonic functions (cf. Biharmonic function). Each poly-harmonic function is an analytic function of the coordinates $ x _ {j} $. Some other properties of harmonic functions also carry over, with corresponding changes, to poly-harmonic functions.
For poly-harmonic functions of any order $ m > 1 $, representations using harmonic functions are generalized to get results known for biharmonic functions [1]–[5]. For example, for a poly-harmonic function $ u $ of two variables there is the representation
$$ u( x _ {1} , x _ {2} ) = \ \sum _ { k= } 0 ^ { m- } 1 r ^ {2k} \omega _ {k} ( x _ {1} , x _ {2} ),\ \ r ^ {2} = x _ {1} ^ {2} + x _ {2} ^ {2} , $$
where $ \omega _ {k} $, $ k = 0 \dots m- 1 $, are harmonic functions in $ D $. For a function $ u( x _ {1} , x _ {2} ) $ of two variables to be a poly-harmonic function, it is necessary and sufficient that it be the real (or imaginary) part of a poly-analytic function.
The basic boundary value problem for a poly-harmonic function of order $ m > 1 $ is as follows: Find a poly-harmonic function $ u = u( x) $ in a region $ D $ that is continuous along with its derivatives up to and including the order $ m- 1 $ in the closed region $ \overline{D}\; = D \cup C $ and which satisfies the following conditions on the boundary $ C $:
$$ \tag{* } \left . \begin{array}{c} u \mid _ {C} = f _ {0} ( y), \\ \left . \frac{\partial u }{\partial n } \right | _ {C} = \ f _ {1} ( y) \dots \left . \frac{\partial ^ {m-} 1 u }{\partial n ^ {m-} 1 } \right | _ {C} = \ f _ {m-} 1 ( y),\ y \in C \end{array} \right \} , $$
where $ \partial u / \partial n $ is the derivative along the normal to $ C $ and $ f _ {0} ( y) \dots f _ {m-} 1 ( y) $ are given sufficiently smooth functions on the sufficiently smooth boundary $ C $. Many studies deal with solving problem (*) in the ball in $ \mathbf R ^ {n} $[1], [6]. To solve the problem (*) in the case of an arbitrary region, one uses methods of integral equations, as well as variational methods [1], [6].
References
[1] | I.N. Vekua, "New methods for solving elliptic equations" , North-Holland (1967) (Translated from Russian) |
[2] | I.I. Privalov, B.M. Pchelin, "Sur la théorie générale des fonctions polyharmoniques" C.R. Acad. Sci. Paris , 204 (1937) pp. 328–330 Mat. Sb. , 2 : 4 (1937) pp. 745–758 |
[3] | M. Nicolesco, "Les fonctions poly-harmoniques" , Hermann (1936) |
[4] | M. Nicolesco, "Nouvelles recherches sur les fonctions polyharmoniques" Disq. Math. Phys. , 1 (1940) pp. 43–56 |
[5] | C. Tolotti, "Sulla struttura delle funzioni iperarmoniche in pui variabili independenti" Giorn. Math. Battaglini , 1 (1947) pp. 61–117 |
[6] | C. Miranda, "Partial differential equations of elliptic type" , Springer (1970) (Translated from Italian) |
Comments
See [a1] for an updated bibliography and for a slightly more general definition: $ u $ is poly-harmonic on the domain $ \Omega $ if $ [ {| \Delta ^ {n} u | } / {( 2n)! } ] ^ {n/2} \rightarrow 0 $ locally uniformly on $ \Omega $.
References
[a1] | N. Aronszain, T.M. Creese, L.J. Lipkin, "Polyharmonic functions" , Clarendon Press (1983) |
[a2] | P.R. Garabedian, "Partial differential equations" , Chelsea, reprint (1986) |
Poly-harmonic function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Poly-harmonic_function&oldid=12716