Difference between revisions of "Poisson transform"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | p0733901.png | ||
+ | $#A+1 = 21 n = 0 | ||
+ | $#C+1 = 21 : ~/encyclopedia/old_files/data/P073/P.0703390 Poisson transform | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
The [[Integral transform|integral transform]] | The [[Integral transform|integral transform]] | ||
− | + | $$ \tag{* } | |
+ | f ( x) = | ||
+ | \frac{1} \pi | ||
+ | |||
+ | \int\limits _ {- \infty } ^ { {+ } \infty } | ||
+ | |||
+ | \frac{1}{1 + ( x - t ) ^ {2} } | ||
+ | d \alpha ( t) | ||
+ | $$ | ||
+ | |||
+ | where $ \alpha ( t) $ | ||
+ | is a [[Function of bounded variation|function of bounded variation]] in every finite interval, and also the transform | ||
+ | |||
+ | $$ | ||
+ | f ( x) = | ||
+ | \frac{1} \pi | ||
+ | |||
+ | \int\limits _ {- \infty } ^ \infty | ||
+ | |||
+ | \frac{\phi ( t) }{1 + ( x - t ) ^ {2} } | ||
+ | \ | ||
+ | d t | ||
+ | $$ | ||
− | + | which results from (*) if $ \alpha ( t) $ | |
+ | is an absolutely-continuous function (cf. [[Absolute continuity|Absolute continuity]]). Let | ||
− | + | $$ | |
+ | \widehat{g} ( x) = - | ||
+ | \frac{1} \pi | ||
− | + | \int\limits _ { 0 } ^ \infty | |
− | + | \frac{g ( x + u ) - 2 g ( x) + g( x - u ) }{u ^ {2} } | |
+ | d u | ||
+ | $$ | ||
and let | and let | ||
− | + | $$ | |
+ | T _ {t} g ( x) = \ | ||
+ | \sum _ { k= } 0 ^ \infty ( - 1 ) ^ {k} | ||
+ | |||
+ | \frac{t ^ {2k} }{( 2 k ) ! } | ||
+ | |||
+ | g ^ {( 2 k ) } ( x) + | ||
+ | $$ | ||
− | + | $$ | |
+ | + | ||
+ | \sum _ { k= } 0 ^ \infty ( - 1 ) ^ {k} | ||
+ | \frac{t ^ {2k+} 1 }{( 2 k + 1 ) ! } | ||
+ | \widehat{g} {} ^ {(} 2k) ( x) . | ||
+ | $$ | ||
The following inversion formulas hold for the Poisson transform: | The following inversion formulas hold for the Poisson transform: | ||
− | + | $$ | |
− | + | \frac{\alpha ( x + 0 ) + \alpha ( x - 0 ) }{2} | |
+ | - | ||
− | + | \frac{\alpha ( + 0 ) + \alpha ( - 0 ) }{2\ } | |
+ | = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | \lim\limits _ {t \uparrow 1 } \int\limits _ { 0 } ^ { x } T _ {t} f ( u) d u | ||
+ | $$ | ||
+ | |||
+ | for all $ x $, | ||
+ | and | ||
+ | |||
+ | $$ | ||
+ | \phi ( x) = \ | ||
+ | \lim\limits _ {t \uparrow 1 } \ | ||
+ | T _ {t} f ( x) | ||
+ | $$ | ||
almost everywhere. | almost everywhere. | ||
− | Let | + | Let $ C $ |
+ | be a convex open acute cone in $ \mathbf R ^ {n} $ | ||
+ | with vertex at zero and let $ C ^ {*} $ | ||
+ | be the dual cone, that is, | ||
− | + | $$ | |
+ | C ^ {*} = \{ \xi : {\xi _ {1} x _ {1} + \dots + \xi _ {n} x _ {n} \geq 0 \textrm{ for all } x \in C } \} | ||
+ | . | ||
+ | $$ | ||
The function | The function | ||
− | + | $$ | |
+ | {\mathcal K} _ {C} ( z) = \ | ||
+ | \int\limits _ { C } | ||
+ | e ^ {i ( z _ {1} \xi _ {1} + \dots + z _ {n} \xi _ {n} ) } d \xi | ||
+ | $$ | ||
− | is called the Cauchy kernel of the tube domain | + | is called the Cauchy kernel of the tube domain $ T ^ {C} = \{ {z = x + i y } : {x \in \mathbf R ^ {n} , y \in C } \} $. |
+ | The Poisson transform of a (generalized) function $ f $ | ||
+ | is the convolution (cf. [[Convolution of functions|Convolution of functions]]) | ||
− | + | $$ | |
+ | f \star {\mathcal P} _ {C} ( x , y ) ,\ \ | ||
+ | ( x , y ) \in T ^ {C} , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | {\mathcal P} _ {C} ( x , y ) = \ | ||
+ | |||
+ | \frac{| {\mathcal K} _ {C} ( x + i y ) | ^ {2} }{( 2 \pi ) ^ {n} {\mathcal K} _ {C} ( i y ) } | ||
+ | |||
+ | $$ | ||
− | is the Poisson kernel of the tube domain | + | is the Poisson kernel of the tube domain $ T ^ {C} $( |
+ | see [[#References|[2]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Pollard, "The Poisson transform" ''Trans. Amer. Math. Soc.'' , '''78''' : 2 (1955) pp. 541–550</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.S. Vladimirov, "Generalized functions in mathematical physics" , MIR (1977) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Pollard, "The Poisson transform" ''Trans. Amer. Math. Soc.'' , '''78''' : 2 (1955) pp. 541–550</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.S. Vladimirov, "Generalized functions in mathematical physics" , MIR (1977) (Translated from Russian)</TD></TR></table> |
Revision as of 08:06, 6 June 2020
$$ \tag{* } f ( x) = \frac{1} \pi \int\limits _ {- \infty } ^ { {+ } \infty } \frac{1}{1 + ( x - t ) ^ {2} } d \alpha ( t) $$
where $ \alpha ( t) $ is a function of bounded variation in every finite interval, and also the transform
$$ f ( x) = \frac{1} \pi \int\limits _ {- \infty } ^ \infty \frac{\phi ( t) }{1 + ( x - t ) ^ {2} } \ d t $$
which results from (*) if $ \alpha ( t) $ is an absolutely-continuous function (cf. Absolute continuity). Let
$$ \widehat{g} ( x) = - \frac{1} \pi \int\limits _ { 0 } ^ \infty \frac{g ( x + u ) - 2 g ( x) + g( x - u ) }{u ^ {2} } d u $$
and let
$$ T _ {t} g ( x) = \ \sum _ { k= } 0 ^ \infty ( - 1 ) ^ {k} \frac{t ^ {2k} }{( 2 k ) ! } g ^ {( 2 k ) } ( x) + $$
$$ + \sum _ { k= } 0 ^ \infty ( - 1 ) ^ {k} \frac{t ^ {2k+} 1 }{( 2 k + 1 ) ! } \widehat{g} {} ^ {(} 2k) ( x) . $$
The following inversion formulas hold for the Poisson transform:
$$ \frac{\alpha ( x + 0 ) + \alpha ( x - 0 ) }{2} - \frac{\alpha ( + 0 ) + \alpha ( - 0 ) }{2\ } = $$
$$ = \ \lim\limits _ {t \uparrow 1 } \int\limits _ { 0 } ^ { x } T _ {t} f ( u) d u $$
for all $ x $, and
$$ \phi ( x) = \ \lim\limits _ {t \uparrow 1 } \ T _ {t} f ( x) $$
almost everywhere.
Let $ C $ be a convex open acute cone in $ \mathbf R ^ {n} $ with vertex at zero and let $ C ^ {*} $ be the dual cone, that is,
$$ C ^ {*} = \{ \xi : {\xi _ {1} x _ {1} + \dots + \xi _ {n} x _ {n} \geq 0 \textrm{ for all } x \in C } \} . $$
The function
$$ {\mathcal K} _ {C} ( z) = \ \int\limits _ { C } e ^ {i ( z _ {1} \xi _ {1} + \dots + z _ {n} \xi _ {n} ) } d \xi $$
is called the Cauchy kernel of the tube domain $ T ^ {C} = \{ {z = x + i y } : {x \in \mathbf R ^ {n} , y \in C } \} $. The Poisson transform of a (generalized) function $ f $ is the convolution (cf. Convolution of functions)
$$ f \star {\mathcal P} _ {C} ( x , y ) ,\ \ ( x , y ) \in T ^ {C} , $$
where
$$ {\mathcal P} _ {C} ( x , y ) = \ \frac{| {\mathcal K} _ {C} ( x + i y ) | ^ {2} }{( 2 \pi ) ^ {n} {\mathcal K} _ {C} ( i y ) } $$
is the Poisson kernel of the tube domain $ T ^ {C} $( see [2]).
References
[1] | H. Pollard, "The Poisson transform" Trans. Amer. Math. Soc. , 78 : 2 (1955) pp. 541–550 |
[2] | V.S. Vladimirov, "Generalized functions in mathematical physics" , MIR (1977) (Translated from Russian) |
Poisson transform. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Poisson_transform&oldid=14304