Difference between revisions of "Poincaré-Bertrand formula"
Ulf Rehmann (talk | contribs) m (moved Poincaré–Bertrand formula to Poincare-Bertrand formula: ascii title) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | p0729801.png | ||
+ | $#A+1 = 24 n = 0 | ||
+ | $#C+1 = 24 : ~/encyclopedia/old_files/data/P072/P.0702980 Poincar\Aee\ANDBertrand formula | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A formula for rearranging the order of integration in iterated improper integrals of Cauchy principal value type (cf. [[Improper integral|Improper integral]]). | A formula for rearranging the order of integration in iterated improper integrals of Cauchy principal value type (cf. [[Improper integral|Improper integral]]). | ||
− | Let | + | Let $ \Gamma $ |
+ | be a simple closed or open smooth curve in the complex plane, let $ \phi ( t , t _ {1} ) $ | ||
+ | be a function defined on $ \Gamma $( | ||
+ | generally speaking complex-valued) and satisfying a uniform [[Hölder condition|Hölder condition]] with respect to $ t $ | ||
+ | and $ t _ {1} $, | ||
+ | and let $ t _ {0} $ | ||
+ | be a fixed point on $ \Gamma $ | ||
+ | which is not an end-point if $ \Gamma $ | ||
+ | is open. Then one has the Poincaré–Bertrand formula | ||
+ | |||
+ | $$ \tag{1 } | ||
+ | \int\limits _ \Gamma | ||
+ | |||
+ | \frac{dt}{t - t _ {0} } | ||
+ | |||
+ | \int\limits _ \Gamma | ||
+ | |||
+ | \frac{\phi ( t , t _ {1} ) }{t _ {1} - t } | ||
+ | d t _ {1\ } = | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | = \ | ||
+ | - \pi ^ {2} \phi ( t _ {0} , t _ {0} ) + \int\limits _ \Gamma d t _ {1} \int\limits _ \Gamma | ||
+ | \frac{\phi ( t , t _ {1} ) }{ | ||
+ | ( t - t _ {0} ) ( t _ {1} - t ) } | ||
+ | d t . | ||
+ | $$ | ||
+ | |||
+ | The formula is true under more general assumptions on the curve $ \Gamma $ | ||
+ | and the function $ \phi $( | ||
+ | see [[#References|[4]]]). If $ \phi ( t , t _ {1} ) = \alpha ( t) \beta ( t _ {1} ) $, | ||
+ | where $ \alpha \in L _ {p} $, | ||
+ | $ \beta \in L _ {q } $, | ||
+ | $ q = p / ( p - 1 ) $, | ||
+ | equation (1) is true for almost-all $ t _ {0} \in \Gamma $( | ||
+ | see [[#References|[5]]], [[#References|[6]]]). If the curve $ \Gamma $ | ||
+ | is closed and the function $ \phi $ | ||
+ | depends on one variable only, then equation (1) takes the form | ||
+ | |||
+ | $$ \tag{2 } | ||
+ | |||
+ | \frac{1}{( \pi i ) ^ {2} } | ||
− | + | \int\limits _ \Gamma | |
− | + | \frac{dt}{t - t _ {0} } | |
− | + | \int\limits _ \Gamma | |
− | + | \frac{\phi ( t _ {1} ) }{t _ {1} - t } | |
+ | d t _ {1} = \phi ( t _ {0} ) , | ||
+ | $$ | ||
− | and holds for all or almost-all | + | and holds for all or almost-all $ t _ {0} \in \Gamma $, |
+ | depending (respectively) on whether $ \phi $ | ||
+ | satisfies a Hölder condition or $ \phi \in L _ {p} $, | ||
+ | $ p > 1 $. | ||
+ | Equation (2) is also called the Poincaré–Bertrand formula. | ||
Analogues of formula (1) have been constructed for multiple integrals (see [[#References|[8]]]–[[#References|[11]]]). | Analogues of formula (1) have been constructed for multiple integrals (see [[#References|[8]]]–[[#References|[11]]]). |
Latest revision as of 08:06, 6 June 2020
A formula for rearranging the order of integration in iterated improper integrals of Cauchy principal value type (cf. Improper integral).
Let $ \Gamma $ be a simple closed or open smooth curve in the complex plane, let $ \phi ( t , t _ {1} ) $ be a function defined on $ \Gamma $( generally speaking complex-valued) and satisfying a uniform Hölder condition with respect to $ t $ and $ t _ {1} $, and let $ t _ {0} $ be a fixed point on $ \Gamma $ which is not an end-point if $ \Gamma $ is open. Then one has the Poincaré–Bertrand formula
$$ \tag{1 } \int\limits _ \Gamma \frac{dt}{t - t _ {0} } \int\limits _ \Gamma \frac{\phi ( t , t _ {1} ) }{t _ {1} - t } d t _ {1\ } = $$
$$ = \ - \pi ^ {2} \phi ( t _ {0} , t _ {0} ) + \int\limits _ \Gamma d t _ {1} \int\limits _ \Gamma \frac{\phi ( t , t _ {1} ) }{ ( t - t _ {0} ) ( t _ {1} - t ) } d t . $$
The formula is true under more general assumptions on the curve $ \Gamma $ and the function $ \phi $( see [4]). If $ \phi ( t , t _ {1} ) = \alpha ( t) \beta ( t _ {1} ) $, where $ \alpha \in L _ {p} $, $ \beta \in L _ {q } $, $ q = p / ( p - 1 ) $, equation (1) is true for almost-all $ t _ {0} \in \Gamma $( see [5], [6]). If the curve $ \Gamma $ is closed and the function $ \phi $ depends on one variable only, then equation (1) takes the form
$$ \tag{2 } \frac{1}{( \pi i ) ^ {2} } \int\limits _ \Gamma \frac{dt}{t - t _ {0} } \int\limits _ \Gamma \frac{\phi ( t _ {1} ) }{t _ {1} - t } d t _ {1} = \phi ( t _ {0} ) , $$
and holds for all or almost-all $ t _ {0} \in \Gamma $, depending (respectively) on whether $ \phi $ satisfies a Hölder condition or $ \phi \in L _ {p} $, $ p > 1 $. Equation (2) is also called the Poincaré–Bertrand formula.
Analogues of formula (1) have been constructed for multiple integrals (see [8]–[11]).
Formula (1) was obtained, under certain conditions, by G.H. Hardy (see [7]) before H. Poincaré (see [1]) and G. Bertrand (see [2], [3]).
References
[1] | H. Poincaré, "Les méthodes nouvelles de la mécanique céleste" , 3 , Gauthier-Villars (1899) |
[2] | G. Bertrand, "Equations de Fredholm à intégrales principales au sens de Cauchy" C.R. Acad. Sci. Paris , 172 (1921) pp. 1458–1461 |
[3] | G. Bertrand, "La théorie des marées et les équations intégrales" Ann. Sci. Ecole Norm. Sup. , 40 (1923) pp. 151–258 |
[4] | N.I. Muskhelishvili, "Singular integral equations" , Wolters-Noordhoff (1972) (Translated from Russian) |
[5] | B.V. Khvedelidze, "Some properties of singular integrals in the sense of the Cauchy–Lebesgue principal value" Soobsh. Akad. Nauk. GruzSSR , 8 : 5 (1947) pp. 283–290 (In Russian) |
[6] | B.V. Khvedelidze, "The method of Cauchy-type integrals in the discontinuous boundary-value problems of the theory of holomorphic functions of a complex variable" J. Soviet Math. , 7 : 3 (1977) pp. 309–415 Itogi Nauk. i Tekhn. Sovrem. Probl. Mat. , 7 (1975) pp. 5–162 |
[7] | G.H. Hardy, "The theory of Cauchy's principal values" Proc. London Math. Soc. , 7 : 2 (1909) pp. 181–208 |
[8] | F. Tricomi, "Equazioni integrali contenenti il valor principale doppio" Math. Z. , 27 (1928) pp. 87–133 |
[9] | G. Giraud, "Sur une classe générale d'équations à intégrales principales" C.R. Acad. Sci. Paris , 202 : 26 (1936) pp. 2124–2127 |
[10] | G. Giraud, "Equations à intégrales principales; étude suivie d'une application" Ann. Sci. Ecole Norm. Sup. , 51 : 3–4 (1934) pp. 251–372 |
[11] | S.G. Mikhlin, "Singular integral equations" Uspekhi Mat. Nauk , 3 : 3 (1948) pp. 29–112 (In Russian) |
[12] | S.G. Mikhlin, "Multidimensional singular integrals and integral equations" , Pergamon (1965) (Translated from Russian) |
Poincaré-Bertrand formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Poincar%C3%A9-Bertrand_formula&oldid=22913