|
|
Line 1: |
Line 1: |
| + | <!-- |
| + | p1101502.png |
| + | $#A+1 = 78 n = 0 |
| + | $#C+1 = 78 : ~/encyclopedia/old_files/data/P110/P.1100150 \BMI po\EMI\AAhgroup, |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| ''partially ordered group'' | | ''partially ordered group'' |
| | | |
− | A [[Group|group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p1101502.png" /> endowed with a [[Partial order|partial order]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p1101503.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p1101504.png" />, | + | A [[Group|group]] $ \{ G; \cdot, \cle \} $ |
| + | endowed with a [[Partial order|partial order]] $ \cle $ |
| + | such that for all $ x,y,z,t \in G $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p1101505.png" /></td> </tr></table>
| + | $$ |
| + | x \cle y \Rightarrow zxt \cle xyt. |
| + | $$ |
| | | |
− | (Cf. also [[Partially ordered group|Partially ordered group]].) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p1101506.png" /> is the identity of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p1101507.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p1101508.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p1101509.png" /> is the positive cone of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015010.png" /> (cf. [[L-group|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015011.png" />-group]]), then the following relations hold: | + | (Cf. also [[Partially ordered group|Partially ordered group]].) If $ e $ |
| + | is the identity of a $ po $- |
| + | group $ G $ |
| + | and $ P = P ( G ) = \{ {x \in G } : {x \cge e } \} $ |
| + | is the positive cone of $ G $( |
| + | cf. [[L-group| $ l $- |
| + | group]]), then the following relations hold: |
| | | |
− | 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015012.png" />; | + | 1) $ P \cdot P \subseteq P $; |
| | | |
− | 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015013.png" />; | + | 2) $ P \cap P = \{ e \} $; |
| | | |
− | 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015014.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015015.png" />. | + | 3) $ x ^ {- 1 } Px \subseteq P $ |
| + | for all $ x $. |
| | | |
− | If, in a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015016.png" />, one can find a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015017.png" /> with the properties 1)–3), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015018.png" /> can be made into a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015019.png" />-group by setting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015020.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015021.png" />. It is correct to identify the order of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015022.png" />-group with its positive cone. One often writes a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015023.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015024.png" /> with positive cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015025.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015026.png" />. | + | If, in a group $ G $, |
| + | one can find a set $ P $ |
| + | with the properties 1)–3), then $ G $ |
| + | can be made into a $ po $- |
| + | group by setting $ x \cle y $ |
| + | if and only if $ yx ^ {- 1 } \in P $. |
| + | It is correct to identify the order of a $ po $- |
| + | group with its positive cone. One often writes a $ po $- |
| + | group $ G $ |
| + | with positive cone $ P $ |
| + | as $ ( G,P ) $. |
| | | |
− | A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015027.png" /> from a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015028.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015029.png" /> into a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015030.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015031.png" /> is an order homomorphism if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015032.png" /> is a [[Homomorphism|homomorphism]] of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015033.png" /> and for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015034.png" />, | + | A mapping $ \varphi : G \rightarrow H $ |
| + | from a $ po $- |
| + | group $ G $ |
| + | into a $ po $- |
| + | group $ H $ |
| + | is an order homomorphism if $ \varphi $ |
| + | is a [[Homomorphism|homomorphism]] of the group $ G $ |
| + | and for all $ x,y \in G $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015035.png" /></td> </tr></table>
| + | $$ |
| + | x \cle y \Rightarrow \varphi ( x ) \cle \varphi ( y ) . |
| + | $$ |
| | | |
− | A homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015036.png" /> from a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015037.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015038.png" /> into a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015039.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015040.png" /> is an order homomorphism if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015041.png" />. | + | A homomorphism $ \varphi $ |
| + | from a $ po $- |
| + | group $ ( G,P ) $ |
| + | into a $ po $- |
| + | group $ ( H,Q ) $ |
| + | is an order homomorphism if and only if $ \varphi ( P ) \subseteq Q $. |
| | | |
− | A subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015042.png" /> of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015043.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015044.png" /> is called convex (cf. [[Convex subgroup|Convex subgroup]]) if for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015045.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015046.png" />, | + | A subgroup $ H $ |
| + | of a $ po $- |
| + | group $ G $ |
| + | is called convex (cf. [[Convex subgroup|Convex subgroup]]) if for all $ x,y,z $ |
| + | with $ x,z \in H $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015047.png" /></td> </tr></table>
| + | $$ |
| + | x \cle y \cle z \Rightarrow y \in H. |
| + | $$ |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015048.png" /> is a convex subgroup of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015049.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015050.png" />, then the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015051.png" /> of right cosets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015052.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015053.png" /> is a [[Partially ordered set|partially ordered set]] with the induced order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015054.png" /> if there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015055.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015056.png" />. The quotient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015057.png" /> of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015058.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015059.png" /> by a convex normal subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015060.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015061.png" />-group respect with the induced partial order, and the natural homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015062.png" /> is an order homomorphism. The homomorphism theorem holds for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015063.png" />-groups: if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015064.png" /> is an order homomorphism from a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015065.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015066.png" /> into a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015067.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015068.png" />, then the kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015069.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015070.png" /> is a convex [[Normal subgroup|normal subgroup]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015071.png" /> and there exists an order isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015072.png" /> from the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015073.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015074.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015075.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015076.png" />. | + | If $ H $ |
| + | is a convex subgroup of a $ po $- |
| + | group $ G $, |
| + | then the set $ G/H $ |
| + | of right cosets of $ G $ |
| + | by $ H $ |
| + | is a [[Partially ordered set|partially ordered set]] with the induced order $ Hx \cle Hy $ |
| + | if there exists an $ h \in H $ |
| + | such that $ x \cle hy $. |
| + | The quotient group $ G/H $ |
| + | of a $ po $- |
| + | group $ G $ |
| + | by a convex normal subgroup $ H $ |
| + | is a $ po $- |
| + | group respect with the induced partial order, and the natural homomorphism $ \tau : G \rightarrow {G/H } $ |
| + | is an order homomorphism. The homomorphism theorem holds for $ po $- |
| + | groups: if $ \varphi $ |
| + | is an order homomorphism from a $ po $- |
| + | group $ G $ |
| + | into a $ po $- |
| + | group $ H $, |
| + | then the kernel $ N = \{ {x \in G } : {\varphi ( x ) = e } \} $ |
| + | of $ \varphi $ |
| + | is a convex [[Normal subgroup|normal subgroup]] of $ G $ |
| + | and there exists an order isomorphism $ \psi $ |
| + | from the $ po $- |
| + | group $ G/N $ |
| + | into $ H $ |
| + | such that $ \varphi = \tau \psi $. |
| | | |
− | The most important classes of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015077.png" />-groups are the class of lattice-ordered groups (cf. [[L-group|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015078.png" />-group]]) and the class of totally ordered groups (cf. [[O-group|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015079.png" />-group]]). | + | The most important classes of $ po $- |
| + | groups are the class of lattice-ordered groups (cf. [[L-group| $ l $- |
| + | group]]) and the class of totally ordered groups (cf. [[O-group| $ o $- |
| + | group]]). |
| | | |
| This article extends and updates the article [[Partially ordered group|Partially ordered group]] (Volume 7). | | This article extends and updates the article [[Partially ordered group|Partially ordered group]] (Volume 7). |
partially ordered group
A group $ \{ G; \cdot, \cle \} $
endowed with a partial order $ \cle $
such that for all $ x,y,z,t \in G $,
$$
x \cle y \Rightarrow zxt \cle xyt.
$$
(Cf. also Partially ordered group.) If $ e $
is the identity of a $ po $-
group $ G $
and $ P = P ( G ) = \{ {x \in G } : {x \cge e } \} $
is the positive cone of $ G $(
cf. $ l $-
group), then the following relations hold:
1) $ P \cdot P \subseteq P $;
2) $ P \cap P = \{ e \} $;
3) $ x ^ {- 1 } Px \subseteq P $
for all $ x $.
If, in a group $ G $,
one can find a set $ P $
with the properties 1)–3), then $ G $
can be made into a $ po $-
group by setting $ x \cle y $
if and only if $ yx ^ {- 1 } \in P $.
It is correct to identify the order of a $ po $-
group with its positive cone. One often writes a $ po $-
group $ G $
with positive cone $ P $
as $ ( G,P ) $.
A mapping $ \varphi : G \rightarrow H $
from a $ po $-
group $ G $
into a $ po $-
group $ H $
is an order homomorphism if $ \varphi $
is a homomorphism of the group $ G $
and for all $ x,y \in G $,
$$
x \cle y \Rightarrow \varphi ( x ) \cle \varphi ( y ) .
$$
A homomorphism $ \varphi $
from a $ po $-
group $ ( G,P ) $
into a $ po $-
group $ ( H,Q ) $
is an order homomorphism if and only if $ \varphi ( P ) \subseteq Q $.
A subgroup $ H $
of a $ po $-
group $ G $
is called convex (cf. Convex subgroup) if for all $ x,y,z $
with $ x,z \in H $,
$$
x \cle y \cle z \Rightarrow y \in H.
$$
If $ H $
is a convex subgroup of a $ po $-
group $ G $,
then the set $ G/H $
of right cosets of $ G $
by $ H $
is a partially ordered set with the induced order $ Hx \cle Hy $
if there exists an $ h \in H $
such that $ x \cle hy $.
The quotient group $ G/H $
of a $ po $-
group $ G $
by a convex normal subgroup $ H $
is a $ po $-
group respect with the induced partial order, and the natural homomorphism $ \tau : G \rightarrow {G/H } $
is an order homomorphism. The homomorphism theorem holds for $ po $-
groups: if $ \varphi $
is an order homomorphism from a $ po $-
group $ G $
into a $ po $-
group $ H $,
then the kernel $ N = \{ {x \in G } : {\varphi ( x ) = e } \} $
of $ \varphi $
is a convex normal subgroup of $ G $
and there exists an order isomorphism $ \psi $
from the $ po $-
group $ G/N $
into $ H $
such that $ \varphi = \tau \psi $.
The most important classes of $ po $-
groups are the class of lattice-ordered groups (cf. $ l $-
group) and the class of totally ordered groups (cf. $ o $-
group).
This article extends and updates the article Partially ordered group (Volume 7).
References
[a1] | L. Fuchs, "Partially ordered algebraic systems" , Pergamon (1963) |