Namespaces
Variants
Actions

Difference between revisions of "Plücker formulas"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (moved Pluecker formulas to Plücker formulas over redirect: accented title)
m (tex encoded by computer)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
Formulas relating external characteristics, i.e. ones corresponding to projective imbeddings, and internal characteristics of algebraic varieties (cf. [[Algebraic variety|Algebraic variety]]). The oldest and best known numerical formulas in algebraic geometry are the Plücker formulas for a planar reduced and irreducible curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p0729001.png" />, which has only ordinary double and cuspidal singular points. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p0729002.png" /> be the degree of the curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p0729003.png" />, i.e. the number of points on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p0729004.png" /> on a straight line in [[General position|general position]] in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p0729005.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p0729006.png" /> be the class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p0729007.png" />, i.e. the number of straight lines tangent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p0729008.png" /> at non-singular points and passing through a given fixed point in general position in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p0729009.png" />. The two basic Plücker formulas are
+
<!--
 +
p0729001.png
 +
$#A+1 = 42 n = 0
 +
$#C+1 = 42 : ~/encyclopedia/old_files/data/P072/P.0702900 Pl\AGucker formulas
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290010.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290011.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
Formulas relating external characteristics, i.e. ones corresponding to projective imbeddings, and internal characteristics of algebraic varieties (cf. [[Algebraic variety|Algebraic variety]]). The oldest and best known numerical formulas in algebraic geometry are the Plücker formulas for a planar reduced and irreducible curve  $  Z \subset  \mathbf C P  ^ {2} $,
 +
which has only ordinary double and cuspidal singular points. Let  $  d $
 +
be the degree of the curve  $  Z $,
 +
i.e. the number of points on  $  Z $
 +
on a straight line in [[General position|general position]] in  $  \mathbf C P  ^ {2} $,
 +
and let  $  d  ^ {*} $
 +
be the class of  $  Z $,
 +
i.e. the number of straight lines tangent to  $  Z $
 +
at non-singular points and passing through a given fixed point in general position in  $  \mathbf C P  ^ {2} $.
 +
The two basic Plücker formulas are
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290012.png" /> is the genus of the non-singular resolution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290013.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290014.png" /> (cf. [[Resolution of singularities|Resolution of singularities]]), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290015.png" /> is the number of ordinary double points and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290016.png" /> is the number of cuspidal points. Formula (1) reduces to the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290017.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290018.png" /> is a non-singular curve.
+
$$ \tag{1 }
 +
d  ^ {*}  = d( d- 1)- 2 \delta - 3k,
 +
$$
  
Other classical Plücker formulas follow from (1) and (2) by duality. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290019.png" /> is not a straight line, then the curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290020.png" /> dual to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290021.png" /> is defined as the closure of the set of tangents to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290022.png" />, considered as points in the dual plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290023.png" />. A theorem due to J. Plücker [[#References|[3]]] states that the bi-dual curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290024.png" /> coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290025.png" />. If it is assumed that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290026.png" /> has only <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290027.png" /> ordinary double points and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290028.png" /> cuspidal singular points, the formulas
+
$$ \tag{2 }
 +
d  ^ {*}  =  2d + ( 2g- 2)- k,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290029.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1ast)</td></tr></table>
+
where  $  g $
 +
is the genus of the non-singular resolution  $  X $
 +
of  $  Z $(
 +
cf. [[Resolution of singularities|Resolution of singularities]]),  $  \delta $
 +
is the number of ordinary double points and  $  k $
 +
is the number of cuspidal points. Formula (1) reduces to the form  $  d  ^ {*} = d( d- 1) $
 +
if  $  Z $
 +
is a non-singular curve.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290030.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2ast)</td></tr></table>
+
Other classical Plücker formulas follow from (1) and (2) by duality. If  $  Z $
 +
is not a straight line, then the curve  $  Z  ^ {*} $
 +
dual to  $  Z $
 +
is defined as the closure of the set of tangents to  $  Z $,
 +
considered as points in the dual plane  $  \mathbf C P  ^ {2*} $.  
 +
A theorem due to J. Plücker [[#References|[3]]] states that the bi-dual curve  $  Z  ^ {**} $
 +
coincides with  $  Z $.
 +
If it is assumed that  $  Z  ^ {*} $
 +
has only  $  \delta  ^ {*} $
 +
ordinary double points and  $  k  ^ {*} $
 +
cuspidal singular points, the formulas
  
are obtained. The number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290031.png" /> can be interpreted also as the number of bitangents to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290032.png" />, i.e. straight lines that touch <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290033.png" /> at precisely two different non-singular points with contact of order two, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290034.png" /> is the number of points of inflection.
+
$$ \tag{1* }
 +
d  =  d  ^ {*} ( d  ^ {*} - 1)- 2 \delta  ^ {*} - 4k  ^ {*} ,
 +
$$
 +
 
 +
$$ \tag{2* }
 +
d  =  2d  ^ {*} + 2( 2g- 2)- 2k  ^ {*}
 +
$$
 +
 
 +
are obtained. The number $  \delta  ^ {*} $
 +
can be interpreted also as the number of bitangents to $  Z $,  
 +
i.e. straight lines that touch $  Z $
 +
at precisely two different non-singular points with contact of order two, while $  k  ^ {*} $
 +
is the number of points of inflection.
  
 
The four formulas (1), (2), (1ast), and (2ast) are not independent: the fourth follows from any other three. However, any three of them are independent. They also imply the following formulas:
 
The four formulas (1), (2), (1ast), and (2ast) are not independent: the fourth follows from any other three. However, any three of them are independent. They also imply the following formulas:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290035.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3 }
 +
k  ^ {*}  = 3d( d- 2)- 6 \delta - 8k,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290036.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3ast)</td></tr></table>
+
$$ \tag{3* }
 +
= 3d  ^ {*} ( d  ^ {*} - 2)- 6 \delta  ^ {*} - 8k  ^ {*} .
 +
$$
  
 
These formulas were derived by Plücker together with (1) and (1ast) in 1834–1839.
 
These formulas were derived by Plücker together with (1) and (1ast) in 1834–1839.
  
In the case of a ground field of finite characteristic, the Plücker formulas and the duality theorem are not always correct. For example, in characteristic 2 all the tangents to a conic pass through one point, which is called the strange point on the conic, so the dual curve is a straight line. In characteristic 3 there is a non-singular cubic with only three points of inflection, or even with one (according to the Plücker formulas there should be nine). With the correct interpretation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290037.png" />, (1) and (2) remain correct in all characteristics <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290038.png" />; in characteristic 2 they must be replaced by
+
In the case of a ground field of finite characteristic, the Plücker formulas and the duality theorem are not always correct. For example, in characteristic 2 all the tangents to a conic pass through one point, which is called the strange point on the conic, so the dual curve is a straight line. In characteristic 3 there is a non-singular cubic with only three points of inflection, or even with one (according to the Plücker formulas there should be nine). With the correct interpretation of $  d  ^ {*} $,  
 +
(1) and (2) remain correct in all characteristics $  \neq 2 $;  
 +
in characteristic 2 they must be replaced by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290039.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1astast)</td></tr></table>
+
$$ \tag{1** }
 +
d  ^ {*}  = d( d- 1)- 2 \delta - 4k,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290040.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2astast)</td></tr></table>
+
$$ \tag{2** }
 +
d  ^ {*}  = 2d + ( 2g- 2)- 2k.
 +
$$
  
There is a generalization of the Plücker formulas to curves in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290041.png" /> with arbitrary singularities [[#References|[2]]], and also to the case of hyperplanes in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072900/p07290042.png" />.
+
There is a generalization of the Plücker formulas to curves in $  P  ^ {n} $
 +
with arbitrary singularities [[#References|[2]]], and also to the case of hyperplanes in $  P  ^ {n} $.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Berzolari,   "Algebraische Transformationen und Korrespondenzen" , ''Enzyklopaedie der math. Wissenschaften'' , '''3''' : Heft 12 , Teubner (1906) pp. 1787–2218</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.A. Griffiths,   J.E. Harris,   "Principles of algebraic geometry" , Wiley (Interscience) (1978)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S.L. Kleiman,   "The enumerative theory of singularities" , ''Real and Complex Singularities (Oslo, 1976). Proc. Nordic Summer School'' , Sijthoff &amp; Noordhoff (1977) pp. 297–396</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Berzolari, "Algebraische Transformationen und Korrespondenzen" , ''Enzyklopaedie der math. Wissenschaften'' , '''3''' : Heft 12 , Teubner (1906) pp. 1787–2218</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.A. Griffiths, J.E. Harris, "Principles of algebraic geometry" , Wiley (Interscience) (1978) {{MR|0507725}} {{ZBL|0408.14001}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S.L. Kleiman, "The enumerative theory of singularities" , ''Real and Complex Singularities (Oslo, 1976). Proc. Nordic Summer School'' , Sijthoff &amp; Noordhoff (1977) pp. 297–396</TD></TR></table>
 
 
 
 
  
 
====Comments====
 
====Comments====
 
See also [[Plane real algebraic curve|Plane real algebraic curve]] for the notions of class, degree, dual, etc. of a curve.
 
See also [[Plane real algebraic curve|Plane real algebraic curve]] for the notions of class, degree, dual, etc. of a curve.

Latest revision as of 08:06, 6 June 2020


Formulas relating external characteristics, i.e. ones corresponding to projective imbeddings, and internal characteristics of algebraic varieties (cf. Algebraic variety). The oldest and best known numerical formulas in algebraic geometry are the Plücker formulas for a planar reduced and irreducible curve $ Z \subset \mathbf C P ^ {2} $, which has only ordinary double and cuspidal singular points. Let $ d $ be the degree of the curve $ Z $, i.e. the number of points on $ Z $ on a straight line in general position in $ \mathbf C P ^ {2} $, and let $ d ^ {*} $ be the class of $ Z $, i.e. the number of straight lines tangent to $ Z $ at non-singular points and passing through a given fixed point in general position in $ \mathbf C P ^ {2} $. The two basic Plücker formulas are

$$ \tag{1 } d ^ {*} = d( d- 1)- 2 \delta - 3k, $$

$$ \tag{2 } d ^ {*} = 2d + ( 2g- 2)- k, $$

where $ g $ is the genus of the non-singular resolution $ X $ of $ Z $( cf. Resolution of singularities), $ \delta $ is the number of ordinary double points and $ k $ is the number of cuspidal points. Formula (1) reduces to the form $ d ^ {*} = d( d- 1) $ if $ Z $ is a non-singular curve.

Other classical Plücker formulas follow from (1) and (2) by duality. If $ Z $ is not a straight line, then the curve $ Z ^ {*} $ dual to $ Z $ is defined as the closure of the set of tangents to $ Z $, considered as points in the dual plane $ \mathbf C P ^ {2*} $. A theorem due to J. Plücker [3] states that the bi-dual curve $ Z ^ {**} $ coincides with $ Z $. If it is assumed that $ Z ^ {*} $ has only $ \delta ^ {*} $ ordinary double points and $ k ^ {*} $ cuspidal singular points, the formulas

$$ \tag{1* } d = d ^ {*} ( d ^ {*} - 1)- 2 \delta ^ {*} - 4k ^ {*} , $$

$$ \tag{2* } d = 2d ^ {*} + 2( 2g- 2)- 2k ^ {*} $$

are obtained. The number $ \delta ^ {*} $ can be interpreted also as the number of bitangents to $ Z $, i.e. straight lines that touch $ Z $ at precisely two different non-singular points with contact of order two, while $ k ^ {*} $ is the number of points of inflection.

The four formulas (1), (2), (1ast), and (2ast) are not independent: the fourth follows from any other three. However, any three of them are independent. They also imply the following formulas:

$$ \tag{3 } k ^ {*} = 3d( d- 2)- 6 \delta - 8k, $$

$$ \tag{3* } k = 3d ^ {*} ( d ^ {*} - 2)- 6 \delta ^ {*} - 8k ^ {*} . $$

These formulas were derived by Plücker together with (1) and (1ast) in 1834–1839.

In the case of a ground field of finite characteristic, the Plücker formulas and the duality theorem are not always correct. For example, in characteristic 2 all the tangents to a conic pass through one point, which is called the strange point on the conic, so the dual curve is a straight line. In characteristic 3 there is a non-singular cubic with only three points of inflection, or even with one (according to the Plücker formulas there should be nine). With the correct interpretation of $ d ^ {*} $, (1) and (2) remain correct in all characteristics $ \neq 2 $; in characteristic 2 they must be replaced by

$$ \tag{1** } d ^ {*} = d( d- 1)- 2 \delta - 4k, $$

$$ \tag{2** } d ^ {*} = 2d + ( 2g- 2)- 2k. $$

There is a generalization of the Plücker formulas to curves in $ P ^ {n} $ with arbitrary singularities [2], and also to the case of hyperplanes in $ P ^ {n} $.

References

[1] L. Berzolari, "Algebraische Transformationen und Korrespondenzen" , Enzyklopaedie der math. Wissenschaften , 3 : Heft 12 , Teubner (1906) pp. 1787–2218
[2] P.A. Griffiths, J.E. Harris, "Principles of algebraic geometry" , Wiley (Interscience) (1978) MR0507725 Zbl 0408.14001
[3] S.L. Kleiman, "The enumerative theory of singularities" , Real and Complex Singularities (Oslo, 1976). Proc. Nordic Summer School , Sijthoff & Noordhoff (1977) pp. 297–396

Comments

See also Plane real algebraic curve for the notions of class, degree, dual, etc. of a curve.

How to Cite This Entry:
Plücker formulas. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pl%C3%BCcker_formulas&oldid=23456
This article was adapted from an original article by V.V. Shokurov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article