Difference between revisions of "Pfaffian form"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | p0725201.png | ||
| + | $#A+1 = 35 n = 0 | ||
| + | $#C+1 = 35 : ~/encyclopedia/old_files/data/P072/P.0702520 Pfaffian form | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
A [[Differential form|differential form]] of degree 1. | A [[Differential form|differential form]] of degree 1. | ||
====Comments==== | ====Comments==== | ||
| − | A Pfaffian form | + | A Pfaffian form $ \omega = a _ {1} ( x) dx ^ {1} + \dots + a _ {n} ( x) dx ^ {n} $ |
| + | defined on an open subset $ U \subset M $, | ||
| + | $ M $ | ||
| + | a manifold, is of odd class $ 2s+ 1 $ | ||
| + | at $ x $ | ||
| + | if it satisfies | ||
| − | + | $$ | |
| + | \omega \wedge ( d \omega ) ^ {s} ( x) \neq 0 ,\ \ | ||
| + | ( d \omega ) ^ {s+} 1 ( x) = 0 ; | ||
| + | $$ | ||
| − | it is of even class | + | it is of even class $ 2s+ 2 $ |
| + | at $ x $ | ||
| + | if it satisfies | ||
| − | + | $$ | |
| + | \omega \wedge ( d \omega ) ^ {s} ( x) \neq 0 ,\ \ | ||
| + | \omega \wedge ( d \omega ) ^ {s+} 1 ( x) = 0 ,\ \ | ||
| + | ( d \omega ) ^ {s+} 1 ( x) \neq 0. | ||
| + | $$ | ||
| − | Pfaffian forms of class | + | Pfaffian forms of class $ 2s+ 1 $ |
| + | and $ 2s+ 2 $ | ||
| + | both define a [[Pfaffian equation|Pfaffian equation]] of class $ 2s+ 1 $. | ||
Darboux's theorem on Pfaffian forms says the following. | Darboux's theorem on Pfaffian forms says the following. | ||
| − | 1) If | + | 1) If $ \omega $ |
| + | is a Pfaffian form of constant class $ 2s+ 1 $ | ||
| + | on an open subset $ U $ | ||
| + | of a manifold $ M $, | ||
| + | then for every $ x \in U $ | ||
| + | there is a neighbourhood $ V $ | ||
| + | with a family of independent functions $ x ^ {0} \dots x ^ {2s} $, | ||
| + | such that on $ V $, | ||
| − | + | $$ | |
| + | \omega = dx ^ {0} - \sum _ { k= } 1 ^ { s } x ^ {s+} k dx ^ {k} . | ||
| + | $$ | ||
| − | 2) If | + | 2) If $ \omega $ |
| + | is a Pfaffian form of constant class $ 2s+ 2 $ | ||
| + | on an open subset $ U $ | ||
| + | of a manifold $ M $, | ||
| + | then for every $ x \in U $ | ||
| + | there is a neighbourhood $ V $ | ||
| + | with a family of independent functions $ x ^ {0} \dots x ^ {s} , z ^ {0} \dots z ^ {s} $ | ||
| + | such that on $ V $, | ||
| − | + | $$ | |
| + | \omega = z ^ {0} dx ^ {0} - \sum _ { k= } 1 ^ { s } z ^ {k} dx ^ {k} , | ||
| + | $$ | ||
| − | where the function | + | where the function $ z ^ {0} $ |
| + | is without zeros on $ V $. | ||
| − | Thus, if | + | Thus, if $ \mathop{\rm dim} ( M) = 2s+ 2 $, |
| + | the functions $ (- x ^ {0} , x ^ {1} \dots x ^ {s} , z ^ {0} \dots z ^ {s} ) $ | ||
| + | are canonical coordinates for the symplectic form $ d \omega $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P. Libermann, C.-M. Marle, "Symplectic geometry and analytical mechanics" , Reidel (1987) pp. Chapt. V (Translated from French)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P. Libermann, C.-M. Marle, "Symplectic geometry and analytical mechanics" , Reidel (1987) pp. Chapt. V (Translated from French)</TD></TR></table> | ||
Revision as of 08:06, 6 June 2020
A differential form of degree 1.
Comments
A Pfaffian form $ \omega = a _ {1} ( x) dx ^ {1} + \dots + a _ {n} ( x) dx ^ {n} $ defined on an open subset $ U \subset M $, $ M $ a manifold, is of odd class $ 2s+ 1 $ at $ x $ if it satisfies
$$ \omega \wedge ( d \omega ) ^ {s} ( x) \neq 0 ,\ \ ( d \omega ) ^ {s+} 1 ( x) = 0 ; $$
it is of even class $ 2s+ 2 $ at $ x $ if it satisfies
$$ \omega \wedge ( d \omega ) ^ {s} ( x) \neq 0 ,\ \ \omega \wedge ( d \omega ) ^ {s+} 1 ( x) = 0 ,\ \ ( d \omega ) ^ {s+} 1 ( x) \neq 0. $$
Pfaffian forms of class $ 2s+ 1 $ and $ 2s+ 2 $ both define a Pfaffian equation of class $ 2s+ 1 $.
Darboux's theorem on Pfaffian forms says the following.
1) If $ \omega $ is a Pfaffian form of constant class $ 2s+ 1 $ on an open subset $ U $ of a manifold $ M $, then for every $ x \in U $ there is a neighbourhood $ V $ with a family of independent functions $ x ^ {0} \dots x ^ {2s} $, such that on $ V $,
$$ \omega = dx ^ {0} - \sum _ { k= } 1 ^ { s } x ^ {s+} k dx ^ {k} . $$
2) If $ \omega $ is a Pfaffian form of constant class $ 2s+ 2 $ on an open subset $ U $ of a manifold $ M $, then for every $ x \in U $ there is a neighbourhood $ V $ with a family of independent functions $ x ^ {0} \dots x ^ {s} , z ^ {0} \dots z ^ {s} $ such that on $ V $,
$$ \omega = z ^ {0} dx ^ {0} - \sum _ { k= } 1 ^ { s } z ^ {k} dx ^ {k} , $$
where the function $ z ^ {0} $ is without zeros on $ V $.
Thus, if $ \mathop{\rm dim} ( M) = 2s+ 2 $, the functions $ (- x ^ {0} , x ^ {1} \dots x ^ {s} , z ^ {0} \dots z ^ {s} ) $ are canonical coordinates for the symplectic form $ d \omega $.
References
| [a1] | P. Libermann, C.-M. Marle, "Symplectic geometry and analytical mechanics" , Reidel (1987) pp. Chapt. V (Translated from French) |
Pfaffian form. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pfaffian_form&oldid=13779