Namespaces
Variants
Actions

Difference between revisions of "Paving"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A set of subsets of a set (or space) containing the empty subset. The elements of the paving are called stones. A set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071870/p0718701.png" /> together with a paving <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071870/p0718702.png" /> forms a paved space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071870/p0718703.png" />. A compact paving (a compact paved space) is a paving <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071870/p0718704.png" /> (a paved space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071870/p0718705.png" />) with the finite intersection property: for every finite subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071870/p0718706.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071870/p0718707.png" /> is non-empty.
+
<!--
 +
p0718701.png
 +
$#A+1 = 7 n = 0
 +
$#C+1 = 7 : ~/encyclopedia/old_files/data/P071/P.0701870 Paving
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A set of subsets of a set (or space) containing the empty subset. The elements of the paving are called stones. A set $  \Omega $
 +
together with a paving $  {\mathcal C} $
 +
forms a paved space $  ( \Omega , {\mathcal C} ) $.  
 +
A compact paving (a compact paved space) is a paving $  {\mathcal C} $(
 +
a paved space $  ( \Omega , {\mathcal C} ) $)  
 +
with the finite intersection property: for every finite subset $  \{ C _ {1} \dots C _ {n} \} \subset  {\mathcal C} $,  
 +
$  \cap _ {i=} 1  ^ {n} C _ {i} $
 +
is non-empty.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M.M. Rao,  "Measure theory and integration" , Wiley (Interscience)  (1987)  pp. Chapt. 7</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M.M. Rao,  "Measure theory and integration" , Wiley (Interscience)  (1987)  pp. Chapt. 7</TD></TR></table>

Latest revision as of 08:05, 6 June 2020


A set of subsets of a set (or space) containing the empty subset. The elements of the paving are called stones. A set $ \Omega $ together with a paving $ {\mathcal C} $ forms a paved space $ ( \Omega , {\mathcal C} ) $. A compact paving (a compact paved space) is a paving $ {\mathcal C} $( a paved space $ ( \Omega , {\mathcal C} ) $) with the finite intersection property: for every finite subset $ \{ C _ {1} \dots C _ {n} \} \subset {\mathcal C} $, $ \cap _ {i=} 1 ^ {n} C _ {i} $ is non-empty.

References

[a1] M.M. Rao, "Measure theory and integration" , Wiley (Interscience) (1987) pp. Chapt. 7
How to Cite This Entry:
Paving. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Paving&oldid=17232