Namespaces
Variants
Actions

Difference between revisions of "Pascal distribution"

From Encyclopedia of Mathematics
Jump to: navigation, search
(→‎References: Feller: internal link)
m (tex encoded by computer)
 
Line 1: Line 1:
A discrete [[Probability distribution|probability distribution]] of a random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p0717501.png" /> taking non-negative integer values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p0717502.png" /> in accordance with the formula
+
<!--
 +
p0717501.png
 +
$#A+1 = 29 n = 0
 +
$#C+1 = 29 : ~/encyclopedia/old_files/data/P071/P.0701750 Pascal distribution
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p0717503.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p0717504.png" /> and the integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p0717505.png" /> are parameters.
+
A discrete [[Probability distribution|probability distribution]] of a random variable  $  X $
 +
taking non-negative integer values  $  k = 0, 1 \dots $
 +
in accordance with the formula
 +
 
 +
$$
 +
{\mathsf P} \{ X = k \}  = \
 +
\left ( \begin{array}{c}
 +
r+ k- 1 \\
 +
r- 1
 +
\end{array}
 +
\right ) p  ^ {r} ( 1- p)  ^ {k} ,
 +
$$
 +
 
 +
where  $  0 < p < 1 $
 +
and the integers $  r > 0 $
 +
are parameters.
  
 
The generating function and characteristic function of a Pascal distribution are
 
The generating function and characteristic function of a Pascal distribution are
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p0717506.png" /></td> </tr></table>
+
$$
 +
P( z)  = p  ^ {r} ( 1- qz)  ^ {-} r
 +
$$
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p0717507.png" /></td> </tr></table>
+
$$
 +
f( t)  = p  ^ {r} ( 1- qe  ^ {it} )  ^ {-} r ,\ \
 +
q = 1- p.
 +
$$
  
The mathematical expectation and the variance are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p0717508.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p0717509.png" />, respectively.
+
The mathematical expectation and the variance are $  rq/p $
 +
and $  rq/p ^ {2} $,  
 +
respectively.
  
The Pascal distribution with parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p07175010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p07175011.png" /> arises naturally in the scheme of the Bernoulli trial (cf. [[Bernoulli trials|Bernoulli trials]]) with probability of  "success"  <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p07175012.png" /> and of  "failure"  <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p07175013.png" />, as the distribution of the number of failures up to the occurrence of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p07175014.png" />-th success. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p07175015.png" /> a Pascal distribution is the same as the [[Geometric distribution|geometric distribution]] with parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p07175016.png" />, and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p07175017.png" /> it is the same as the distribution of the sum of independent random variables having an identical geometric distribution with parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p07175018.png" />. Accordingly, the sum of independent random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p07175019.png" /> having Pascal distributions with parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p07175020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p07175021.png" />, respectively, has the Pascal distribution with parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p07175022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p07175023.png" />.
+
The Pascal distribution with parameters $  r $
 +
and p $
 +
arises naturally in the scheme of the Bernoulli trial (cf. [[Bernoulli trials|Bernoulli trials]]) with probability of  "success"   $ p $
 +
and of  "failure"   $ 1- p $,  
 +
as the distribution of the number of failures up to the occurrence of the $  r $-
 +
th success. For $  r= 1 $
 +
a Pascal distribution is the same as the [[Geometric distribution|geometric distribution]] with parameter p $,  
 +
and for $  r > 1 $
 +
it is the same as the distribution of the sum of independent random variables having an identical geometric distribution with parameter p $.  
 +
Accordingly, the sum of independent random variables $  X _ {1} \dots X _ {n} $
 +
having Pascal distributions with parameters p $
 +
and $  r _ {1} \dots r _ {n} $,  
 +
respectively, has the Pascal distribution with parameters p $
 +
and $  r _ {1} + \dots + r _ {n} $.
  
The distribution function of a Pascal distribution for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p07175024.png" /> is given by the formula
+
The distribution function of a Pascal distribution for $  k = 0, 1 \dots $
 +
is given by the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p07175025.png" /></td> </tr></table>
+
$$
 +
F( k)  =
 +
\frac{1}{B( r, k+ 1) }
 +
\int\limits _ { 0 } ^ { p }  x  ^ {r-} 1 ( 1- x)  ^ {k}  dx,
 +
$$
  
where on the right-hand side there stands the value of the [[Beta-distribution|beta-distribution]] function at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p07175026.png" /> (here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p07175027.png" /> is the beta-function). Using this relation one can define <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p07175028.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071750/p07175029.png" />. In this generalized sense a Pascal distribution is called a [[Negative binomial distribution|negative binomial distribution]].
+
where on the right-hand side there stands the value of the [[Beta-distribution|beta-distribution]] function at the point p $(
 +
here $  B( r, k+ 1) $
 +
is the beta-function). Using this relation one can define $  F( k) $
 +
for all $  r > 0 $.  
 +
In this generalized sense a Pascal distribution is called a [[Negative binomial distribution|negative binomial distribution]].
  
 
====References====
 
====References====
Line 27: Line 79:
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  N.L. Johnson,  S. Kotz,  "Distributions in statistics: discrete distributions" , Houghton Mifflin  (1970)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  N.L. Johnson,  S. Kotz,  "Distributions in statistics: discrete distributions" , Houghton Mifflin  (1970)</TD></TR></table>

Latest revision as of 08:05, 6 June 2020


A discrete probability distribution of a random variable $ X $ taking non-negative integer values $ k = 0, 1 \dots $ in accordance with the formula

$$ {\mathsf P} \{ X = k \} = \ \left ( \begin{array}{c} r+ k- 1 \\ r- 1 \end{array} \right ) p ^ {r} ( 1- p) ^ {k} , $$

where $ 0 < p < 1 $ and the integers $ r > 0 $ are parameters.

The generating function and characteristic function of a Pascal distribution are

$$ P( z) = p ^ {r} ( 1- qz) ^ {-} r $$

and

$$ f( t) = p ^ {r} ( 1- qe ^ {it} ) ^ {-} r ,\ \ q = 1- p. $$

The mathematical expectation and the variance are $ rq/p $ and $ rq/p ^ {2} $, respectively.

The Pascal distribution with parameters $ r $ and $ p $ arises naturally in the scheme of the Bernoulli trial (cf. Bernoulli trials) with probability of "success" $ p $ and of "failure" $ 1- p $, as the distribution of the number of failures up to the occurrence of the $ r $- th success. For $ r= 1 $ a Pascal distribution is the same as the geometric distribution with parameter $ p $, and for $ r > 1 $ it is the same as the distribution of the sum of independent random variables having an identical geometric distribution with parameter $ p $. Accordingly, the sum of independent random variables $ X _ {1} \dots X _ {n} $ having Pascal distributions with parameters $ p $ and $ r _ {1} \dots r _ {n} $, respectively, has the Pascal distribution with parameters $ p $ and $ r _ {1} + \dots + r _ {n} $.

The distribution function of a Pascal distribution for $ k = 0, 1 \dots $ is given by the formula

$$ F( k) = \frac{1}{B( r, k+ 1) } \int\limits _ { 0 } ^ { p } x ^ {r-} 1 ( 1- x) ^ {k} dx, $$

where on the right-hand side there stands the value of the beta-distribution function at the point $ p $( here $ B( r, k+ 1) $ is the beta-function). Using this relation one can define $ F( k) $ for all $ r > 0 $. In this generalized sense a Pascal distribution is called a negative binomial distribution.

References

[1] W. Feller, "An introduction to probability theory and its applications", 1 , Wiley (1957)

Comments

References

[a1] N.L. Johnson, S. Kotz, "Distributions in statistics: discrete distributions" , Houghton Mifflin (1970)
How to Cite This Entry:
Pascal distribution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pascal_distribution&oldid=25527
This article was adapted from an original article by A.V. Prokhorov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article