Difference between revisions of "Parseval equality"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | p0715901.png | ||
+ | $#A+1 = 61 n = 0 | ||
+ | $#C+1 = 61 : ~/encyclopedia/old_files/data/P071/P.0701590 Parseval equality | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | An equality expressing the square of the norm of an element in a vector space with a scalar product in terms of the square of the moduli of the [[Fourier coefficients|Fourier coefficients]] of this element in some [[Orthogonal system|orthogonal system]]. Thus, if $ X $ | |
+ | is a normed separable vector space with a scalar product $ ( , ) $, | ||
+ | if $ \| \cdot \| $ | ||
+ | is the corresponding norm and if $ \{ e _ {n} \} $ | ||
+ | is an orthogonal system in $ X $, | ||
+ | $ e _ {n} \neq 0 $, | ||
+ | $ n = 1, 2 \dots $ | ||
+ | then Parseval's equality for an element $ x \in X $ | ||
+ | is | ||
− | + | $$ \tag{1 } | |
+ | \| x \| ^ {2} = \sum _ { n= } 1 ^ \infty | a _ {n} | ^ {2} \| e _ {n} \| ^ {2} , | ||
+ | $$ | ||
− | + | where $ a _ {n} = ( x, e _ {n} )/( e _ {n} , e _ {n} ) $, | |
+ | $ n = 1, 2 \dots $ | ||
+ | are the Fourier coefficients of $ x $ | ||
+ | in the system $ \{ e _ {n} \} $. | ||
+ | If $ \{ e _ {n} \} $ | ||
+ | is orthonormal, then Parseval's equality has the form | ||
− | + | $$ | |
+ | \| x \| ^ {2} = \sum _ { n= } 1 ^ \infty | a _ {n} | ^ {2} . | ||
+ | $$ | ||
− | + | The validity of Parseval's equality for a given element $ x \in X $ | |
+ | is a necessary and sufficient condition for its Fourier series in the orthogonal system $ \{ e _ {n} \} $ | ||
+ | to converge to $ x $ | ||
+ | in the norm of $ X $. | ||
+ | The validity of Parseval's equality for every element $ x \in X $ | ||
+ | is a necessary and sufficient condition for the orthogonal system $ \{ e _ {n} \} $ | ||
+ | to be complete in $ X $( | ||
+ | cf. [[Complete system|Complete system]]). This implies, in particular, that: | ||
− | + | 1) if $ X $ | |
+ | is a separable Hilbert space (cf. [[Hilbert space|Hilbert space]]) and $ \{ e _ {n} \} $ | ||
+ | is an orthogonal basis of it, then Parseval's equality holds for $ \{ e _ {n} \} $ | ||
+ | for every $ x \in X $; | ||
+ | |||
+ | 2) if $ X $ | ||
+ | is a separable Hilbert space, $ x , y \in X $, | ||
+ | if $ \{ e _ {n} \} $ | ||
+ | is an orthonormal basis of $ X $ | ||
+ | and if $ a _ {n} = ( x, e _ {n} ) $ | ||
+ | and $ b _ {n} = ( y, e _ {n} ) $ | ||
+ | are the Fourier coefficients of $ x $ | ||
+ | and $ y $, | ||
+ | then | ||
+ | |||
+ | $$ \tag{2 } | ||
+ | ( x, y) = \sum _ { n= } 1 ^ \infty a _ {n} \overline{ {b _ {n} }}\; , | ||
+ | $$ | ||
the so-called generalized Parseval equality. In a fairly-definitive form the question of the completeness of a system of functions that are the eigen functions of differential operators was studied by V.A. Steklov in [[#References|[1]]]. | the so-called generalized Parseval equality. In a fairly-definitive form the question of the completeness of a system of functions that are the eigen functions of differential operators was studied by V.A. Steklov in [[#References|[1]]]. | ||
− | Parseval's equality can also be generalized to the case of non-separable Hilbert spaces: If | + | Parseval's equality can also be generalized to the case of non-separable Hilbert spaces: If $ \{ e _ \alpha \} $, |
+ | $ \alpha \in \mathfrak A $( | ||
+ | $ \mathfrak A $ | ||
+ | is a certain index set), is a complete orthonormal system in a Hilbert space $ X $, | ||
+ | then for any element $ x \in X $ | ||
+ | Parseval's equality holds: | ||
− | + | $$ | |
+ | ( x, x) = \sum _ {\alpha \in \mathfrak A } | ( x, e _ \alpha ) | ^ {2} , | ||
+ | $$ | ||
and the sum on the right-hand side is to be understood as | and the sum on the right-hand side is to be understood as | ||
− | + | $$ | |
+ | \sup _ {\mathfrak A _ {0} } \sum _ {\alpha \in \mathfrak A } | ( x, e _ \alpha ) | ^ {2} , | ||
+ | $$ | ||
− | where the supremum is taken over all finite subsets | + | where the supremum is taken over all finite subsets $ \mathfrak A _ {0} $ |
+ | of $ \mathfrak A $. | ||
− | When | + | When $ X = L _ {2} [- \pi , \pi ] $, |
+ | the space of real-valued functions with Lebesgue-integrable squares on $ [- \pi , \pi ] $, | ||
+ | and $ f \in L _ {2} [- \pi , \pi ] $, | ||
+ | then one may take the [[Trigonometric system|trigonometric system]] as a complete orthogonal system and | ||
− | + | $$ | |
+ | f \sim | ||
+ | \frac{a _ {0} }{2} | ||
+ | + \sum _ { n= } 1 ^ \infty | ||
+ | ( a _ {n} \cos nx + b _ {n} \sin nx), | ||
+ | $$ | ||
where (1) takes the form | where (1) takes the form | ||
− | + | $$ | |
+ | |||
+ | \frac{1} \pi | ||
+ | \int\limits _ {- \pi } ^ \pi f ^ { 2 } ( t) dt = \ | ||
+ | |||
+ | \frac{a _ {0} ^ {2} }{2} | ||
+ | + \sum _ { n= } 1 ^ \infty ( a _ {n} ^ {2} + b _ {n} ^ {2} | ||
+ | ), | ||
+ | $$ | ||
which is called the classical Parseval equality. It was proved in 1805 by M. Parseval. | which is called the classical Parseval equality. It was proved in 1805 by M. Parseval. | ||
− | If | + | If $ g \in L _ {2} [- \pi , \pi ] $ |
+ | and | ||
− | + | $$ | |
+ | g \sim | ||
+ | \frac{a _ {0} ^ \prime }{2} | ||
+ | + \sum _ { n= } 1 ^ \infty | ||
+ | ( a _ {n} ^ \prime \cos nx + b _ {n} ^ \prime \sin nx ), | ||
+ | $$ | ||
then an equality similar to (2) looks as follows: | then an equality similar to (2) looks as follows: | ||
− | + | $$ \tag{3 } | |
− | + | \frac{1} \pi | |
+ | \int\limits _ {- \pi } ^ \pi f( t) g( t) dt = \ | ||
+ | |||
+ | \frac{1}{2} | ||
+ | a _ {0} a _ {0} ^ \prime + \sum _ { n= } 1 ^ \infty ( a _ {n} a _ {n} ^ \prime + | ||
+ | b _ {n} b _ {n} ^ \prime ). | ||
+ | $$ | ||
+ | |||
+ | Two classes $ K $ | ||
+ | and $ K ^ \prime $ | ||
+ | of real-valued functions defined on $ [- \pi , \pi ] $ | ||
+ | and such that for all $ f \in K $ | ||
+ | and $ g \in K ^ \prime $ | ||
+ | Parseval's equality (3) holds are called complementary. An example of complementary classes are the spaces $ L _ {p} [- \pi , \pi ] $ | ||
+ | and $ L _ {q} [- \pi , \pi ] $, | ||
+ | $ p ^ {-} 1 + q ^ {-} 1 = 1 $, | ||
+ | $ 1 < p < + \infty $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> V.A. Steklov, "Sur certaines égalités générales communes à plusieurs séries de fonctions souvent employées dans l'analyse" ''Zap. Nauchn. Fiz.-Mat. Obshch. Ser. 8'' , '''157''' (1904) pp. 1–32</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.M. Nikol'skii, "A course of mathematical analysis" , '''2''' , MIR (1977) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.A. Il'in, E.G. Poznyak, "Fundamentals of mathematical analysis" , '''2''' , MIR (1982) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1''' , Cambridge Univ. Press (1988)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> A.A. Kirillov, A.D. Gvishiani, "Theorems and problems in functional analysis" , Springer (1982) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> V.A. Steklov, "Sur certaines égalités générales communes à plusieurs séries de fonctions souvent employées dans l'analyse" ''Zap. Nauchn. Fiz.-Mat. Obshch. Ser. 8'' , '''157''' (1904) pp. 1–32</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.M. Nikol'skii, "A course of mathematical analysis" , '''2''' , MIR (1977) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.A. Il'in, E.G. Poznyak, "Fundamentals of mathematical analysis" , '''2''' , MIR (1982) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1''' , Cambridge Univ. Press (1988)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> A.A. Kirillov, A.D. Gvishiani, "Theorems and problems in functional analysis" , Springer (1982) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965)</TD></TR></table> |
Revision as of 08:05, 6 June 2020
An equality expressing the square of the norm of an element in a vector space with a scalar product in terms of the square of the moduli of the Fourier coefficients of this element in some orthogonal system. Thus, if $ X $
is a normed separable vector space with a scalar product $ ( , ) $,
if $ \| \cdot \| $
is the corresponding norm and if $ \{ e _ {n} \} $
is an orthogonal system in $ X $,
$ e _ {n} \neq 0 $,
$ n = 1, 2 \dots $
then Parseval's equality for an element $ x \in X $
is
$$ \tag{1 } \| x \| ^ {2} = \sum _ { n= } 1 ^ \infty | a _ {n} | ^ {2} \| e _ {n} \| ^ {2} , $$
where $ a _ {n} = ( x, e _ {n} )/( e _ {n} , e _ {n} ) $, $ n = 1, 2 \dots $ are the Fourier coefficients of $ x $ in the system $ \{ e _ {n} \} $. If $ \{ e _ {n} \} $ is orthonormal, then Parseval's equality has the form
$$ \| x \| ^ {2} = \sum _ { n= } 1 ^ \infty | a _ {n} | ^ {2} . $$
The validity of Parseval's equality for a given element $ x \in X $ is a necessary and sufficient condition for its Fourier series in the orthogonal system $ \{ e _ {n} \} $ to converge to $ x $ in the norm of $ X $. The validity of Parseval's equality for every element $ x \in X $ is a necessary and sufficient condition for the orthogonal system $ \{ e _ {n} \} $ to be complete in $ X $( cf. Complete system). This implies, in particular, that:
1) if $ X $ is a separable Hilbert space (cf. Hilbert space) and $ \{ e _ {n} \} $ is an orthogonal basis of it, then Parseval's equality holds for $ \{ e _ {n} \} $ for every $ x \in X $;
2) if $ X $ is a separable Hilbert space, $ x , y \in X $, if $ \{ e _ {n} \} $ is an orthonormal basis of $ X $ and if $ a _ {n} = ( x, e _ {n} ) $ and $ b _ {n} = ( y, e _ {n} ) $ are the Fourier coefficients of $ x $ and $ y $, then
$$ \tag{2 } ( x, y) = \sum _ { n= } 1 ^ \infty a _ {n} \overline{ {b _ {n} }}\; , $$
the so-called generalized Parseval equality. In a fairly-definitive form the question of the completeness of a system of functions that are the eigen functions of differential operators was studied by V.A. Steklov in [1].
Parseval's equality can also be generalized to the case of non-separable Hilbert spaces: If $ \{ e _ \alpha \} $, $ \alpha \in \mathfrak A $( $ \mathfrak A $ is a certain index set), is a complete orthonormal system in a Hilbert space $ X $, then for any element $ x \in X $ Parseval's equality holds:
$$ ( x, x) = \sum _ {\alpha \in \mathfrak A } | ( x, e _ \alpha ) | ^ {2} , $$
and the sum on the right-hand side is to be understood as
$$ \sup _ {\mathfrak A _ {0} } \sum _ {\alpha \in \mathfrak A } | ( x, e _ \alpha ) | ^ {2} , $$
where the supremum is taken over all finite subsets $ \mathfrak A _ {0} $ of $ \mathfrak A $.
When $ X = L _ {2} [- \pi , \pi ] $, the space of real-valued functions with Lebesgue-integrable squares on $ [- \pi , \pi ] $, and $ f \in L _ {2} [- \pi , \pi ] $, then one may take the trigonometric system as a complete orthogonal system and
$$ f \sim \frac{a _ {0} }{2} + \sum _ { n= } 1 ^ \infty ( a _ {n} \cos nx + b _ {n} \sin nx), $$
where (1) takes the form
$$ \frac{1} \pi \int\limits _ {- \pi } ^ \pi f ^ { 2 } ( t) dt = \ \frac{a _ {0} ^ {2} }{2} + \sum _ { n= } 1 ^ \infty ( a _ {n} ^ {2} + b _ {n} ^ {2} ), $$
which is called the classical Parseval equality. It was proved in 1805 by M. Parseval.
If $ g \in L _ {2} [- \pi , \pi ] $ and
$$ g \sim \frac{a _ {0} ^ \prime }{2} + \sum _ { n= } 1 ^ \infty ( a _ {n} ^ \prime \cos nx + b _ {n} ^ \prime \sin nx ), $$
then an equality similar to (2) looks as follows:
$$ \tag{3 } \frac{1} \pi \int\limits _ {- \pi } ^ \pi f( t) g( t) dt = \ \frac{1}{2} a _ {0} a _ {0} ^ \prime + \sum _ { n= } 1 ^ \infty ( a _ {n} a _ {n} ^ \prime + b _ {n} b _ {n} ^ \prime ). $$
Two classes $ K $ and $ K ^ \prime $ of real-valued functions defined on $ [- \pi , \pi ] $ and such that for all $ f \in K $ and $ g \in K ^ \prime $ Parseval's equality (3) holds are called complementary. An example of complementary classes are the spaces $ L _ {p} [- \pi , \pi ] $ and $ L _ {q} [- \pi , \pi ] $, $ p ^ {-} 1 + q ^ {-} 1 = 1 $, $ 1 < p < + \infty $.
References
[1] | V.A. Steklov, "Sur certaines égalités générales communes à plusieurs séries de fonctions souvent employées dans l'analyse" Zap. Nauchn. Fiz.-Mat. Obshch. Ser. 8 , 157 (1904) pp. 1–32 |
[2] | S.M. Nikol'skii, "A course of mathematical analysis" , 2 , MIR (1977) (Translated from Russian) |
[3] | V.A. Il'in, E.G. Poznyak, "Fundamentals of mathematical analysis" , 2 , MIR (1982) (Translated from Russian) |
[4] | N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian) |
[5] | A. Zygmund, "Trigonometric series" , 1 , Cambridge Univ. Press (1988) |
[6] | A.A. Kirillov, A.D. Gvishiani, "Theorems and problems in functional analysis" , Springer (1982) (Translated from Russian) |
Comments
References
[a1] | E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965) |
Parseval equality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Parseval_equality&oldid=11840