Difference between revisions of "Paraboloidal coordinates"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | p0712901.png | ||
| + | $#A+1 = 28 n = 0 | ||
| + | $#C+1 = 28 : ~/encyclopedia/old_files/data/P071/P.0701290 Paraboloidal coordinates | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | Numbers $ u $, | |
| + | $ v $ | ||
| + | and $ w $ | ||
| + | related to the rectangular Cartesian coordinates $ x $, | ||
| + | $ y $ | ||
| + | and $ z $ | ||
| + | by the formulas | ||
| + | |||
| + | $$ | ||
| + | x = 2 uw \cos v,\ \ | ||
| + | y = 2uw \sin v,\ \ | ||
| + | z = u ^ {2} - w ^ {2} , | ||
| + | $$ | ||
| + | |||
| + | where $ 0 \leq u < \infty $, | ||
| + | $ 0 \leq v < 2 \pi $, | ||
| + | $ 0 \leq w < \infty $. | ||
| + | The coordinate surfaces are two systems of paraboloids of revolution with oppositely-directed axes ( $ u = \textrm{ const } $ | ||
| + | and $ w = \textrm{ const } $) | ||
| + | and half-planes ( $ v = \textrm{ const } $). | ||
| + | The system of paraboloidal coordinates is orthogonal. | ||
The Lamé coefficients (or scale factors) are | The Lamé coefficients (or scale factors) are | ||
| − | + | $$ | |
| + | L _ {u} = L _ {w} = 2 \sqrt {u ^ {2} + w ^ {2} } ,\ \ | ||
| + | L _ {v} = 2uw. | ||
| + | $$ | ||
The element of surface area is | The element of surface area is | ||
| − | + | $$ | |
| + | d \sigma = | ||
| + | $$ | ||
| − | + | $$ | |
| + | = \ | ||
| + | 4 \sqrt {( u ^ {2} + w ^ {2} ) u ^ {2} w ^ {2} ( du ^ {2} | ||
| + | + dw ^ {2} ) dv ^ {2} + ( u ^ {2} + w ^ {2} )( du dw) ^ {2} } . | ||
| + | $$ | ||
The volume element is | The volume element is | ||
| − | + | $$ | |
| + | dV = 8( u ^ {2} + w ^ {2} ) uw du dv dw. | ||
| + | $$ | ||
The fundamental operations of vector analysis are | The fundamental operations of vector analysis are | ||
| − | + | $$ | |
| + | \mathop{\rm grad} _ {u} \phi = \ | ||
| + | |||
| + | \frac{1}{2 \sqrt {u ^ {2} + w ^ {2} } } | ||
| + | |||
| + | \frac{\partial \phi }{\partial u } | ||
| + | ,\ \ | ||
| + | \mathop{\rm grad} _ {v} \phi = \ | ||
| + | |||
| + | \frac{1}{2uw} | ||
| + | |||
| + | \frac{\partial \phi }{\partial v } | ||
| + | , | ||
| + | $$ | ||
| + | |||
| + | $$ | ||
| + | \mathop{\rm grad} _ {w} \phi = | ||
| + | \frac{1}{2 \sqrt {u ^ {2} | ||
| + | + w ^ {2} } } | ||
| + | |||
| + | \frac{\partial \phi }{\partial w } | ||
| + | , | ||
| + | $$ | ||
| + | |||
| + | $$ | ||
| + | \mathop{\rm div} \mathbf a = | ||
| + | \frac{1}{2uw \sqrt {( u ^ {2} + w ^ {2} ) ^ {3} } } | ||
| + | \times | ||
| + | $$ | ||
| − | + | $$ | |
| + | \times | ||
| + | [ w \mathbf a _ {u} ( 2u ^ {2} + w ^ {2} ) + u \mathbf a _ {w} ( u ^ {2} + 2w ^ {2} )] + | ||
| + | $$ | ||
| − | + | $$ | |
| + | + | ||
| − | + | \frac{1}{2 \sqrt {u ^ {2} + w ^ {2} } } | |
| + | \left ( | ||
| + | \frac{\partial \mathbf a _ {u} }{\partial | ||
| + | u } | ||
| + | + | ||
| + | \frac{\partial \mathbf a _ {w} }{\partial w } | ||
| + | \right ) | ||
| + | + | ||
| + | \frac{1}{2uw} | ||
| + | |||
| + | \frac{\partial \mathbf a _ {v} }{\partial v } | ||
| + | ; | ||
| + | $$ | ||
| − | + | $$ | |
| + | \mathop{\rm rot} _ {u} \mathbf a = | ||
| + | \frac{1}{2uw} | ||
| + | |||
| + | \frac{\partial \mathbf a _ {w} }{\partial v } | ||
| + | - | ||
| + | \frac{1}{2w \sqrt {u ^ {2} + w ^ {2} } } | ||
| + | \left ( | ||
| + | \mathbf a _ {v} + w | ||
| + | \frac{\partial \mathbf a _ {v} }{\partial w } | ||
| + | \right ) , | ||
| + | $$ | ||
| − | + | $$ | |
| + | \mathop{\rm rot} _ {v} \mathbf a = | ||
| + | \frac{1}{2 \sqrt {( u ^ {2} + w ^ {2} ) ^ {3} } } | ||
| + | ( w \mathbf a _ {u} - \mathbf a _ {w} ) + | ||
| + | $$ | ||
| − | + | $$ | |
| + | + | ||
| − | + | \frac{1}{2 \sqrt {u ^ {2} + w ^ {2} } } | |
| + | \left ( | ||
| + | \frac{\partial \mathbf a _ {u} }{\partial w } | ||
| + | - | ||
| + | \frac{\partial \mathbf a _ {w} }{\partial u } | ||
| + | \right ) ; | ||
| + | $$ | ||
| − | + | $$ | |
| + | \mathop{\rm rot} _ {w} \mathbf a = | ||
| + | \frac{1}{2w( u ^ {2} + w ^ {2} ) } | ||
| − | + | \left ( \mathbf a _ {v} + u | |
| + | \frac{\partial \mathbf a _ {v} }{\partial | ||
| + | u } | ||
| + | \right ) - | ||
| + | \frac{1}{2uv} | ||
| + | |||
| + | \frac{\partial \mathbf a _ {u} }{\partial v } | ||
| + | ; | ||
| + | $$ | ||
| − | + | $$ | |
| + | \Delta \phi = | ||
| + | \frac{1}{4( u ^ {2} + w ^ {2} ) } | ||
| + | \left | ||
| + | [ | ||
| + | \frac{\partial ^ {2} \phi }{\partial u ^ {2} } | ||
| + | + | ||
| + | \frac{1}{u} | ||
| + | |||
| + | \frac{\partial \phi }{\partial u } | ||
| + | \right . + | ||
| + | $$ | ||
| + | $$ | ||
| + | + \left . | ||
| + | \left ( | ||
| + | \frac{1}{u ^ {2} } | ||
| + | + | ||
| + | \frac{1}{w ^ {2} | ||
| + | } | ||
| + | \right ) | ||
| + | \frac{\partial ^ {2} \phi }{\partial v ^ {2} } | ||
| + | + | ||
| + | \frac{\partial | ||
| + | ^ {2} \phi }{\partial w ^ {2} } | ||
| + | + | ||
| + | \frac{1}{w} | ||
| + | |||
| + | \frac{\partial \phi }{\partial w } | ||
| + | \right ] . | ||
| + | $$ | ||
====Comments==== | ====Comments==== | ||
Latest revision as of 08:05, 6 June 2020
Numbers $ u $,
$ v $
and $ w $
related to the rectangular Cartesian coordinates $ x $,
$ y $
and $ z $
by the formulas
$$ x = 2 uw \cos v,\ \ y = 2uw \sin v,\ \ z = u ^ {2} - w ^ {2} , $$
where $ 0 \leq u < \infty $, $ 0 \leq v < 2 \pi $, $ 0 \leq w < \infty $. The coordinate surfaces are two systems of paraboloids of revolution with oppositely-directed axes ( $ u = \textrm{ const } $ and $ w = \textrm{ const } $) and half-planes ( $ v = \textrm{ const } $). The system of paraboloidal coordinates is orthogonal.
The Lamé coefficients (or scale factors) are
$$ L _ {u} = L _ {w} = 2 \sqrt {u ^ {2} + w ^ {2} } ,\ \ L _ {v} = 2uw. $$
The element of surface area is
$$ d \sigma = $$
$$ = \ 4 \sqrt {( u ^ {2} + w ^ {2} ) u ^ {2} w ^ {2} ( du ^ {2} + dw ^ {2} ) dv ^ {2} + ( u ^ {2} + w ^ {2} )( du dw) ^ {2} } . $$
The volume element is
$$ dV = 8( u ^ {2} + w ^ {2} ) uw du dv dw. $$
The fundamental operations of vector analysis are
$$ \mathop{\rm grad} _ {u} \phi = \ \frac{1}{2 \sqrt {u ^ {2} + w ^ {2} } } \frac{\partial \phi }{\partial u } ,\ \ \mathop{\rm grad} _ {v} \phi = \ \frac{1}{2uw} \frac{\partial \phi }{\partial v } , $$
$$ \mathop{\rm grad} _ {w} \phi = \frac{1}{2 \sqrt {u ^ {2} + w ^ {2} } } \frac{\partial \phi }{\partial w } , $$
$$ \mathop{\rm div} \mathbf a = \frac{1}{2uw \sqrt {( u ^ {2} + w ^ {2} ) ^ {3} } } \times $$
$$ \times [ w \mathbf a _ {u} ( 2u ^ {2} + w ^ {2} ) + u \mathbf a _ {w} ( u ^ {2} + 2w ^ {2} )] + $$
$$ + \frac{1}{2 \sqrt {u ^ {2} + w ^ {2} } } \left ( \frac{\partial \mathbf a _ {u} }{\partial u } + \frac{\partial \mathbf a _ {w} }{\partial w } \right ) + \frac{1}{2uw} \frac{\partial \mathbf a _ {v} }{\partial v } ; $$
$$ \mathop{\rm rot} _ {u} \mathbf a = \frac{1}{2uw} \frac{\partial \mathbf a _ {w} }{\partial v } - \frac{1}{2w \sqrt {u ^ {2} + w ^ {2} } } \left ( \mathbf a _ {v} + w \frac{\partial \mathbf a _ {v} }{\partial w } \right ) , $$
$$ \mathop{\rm rot} _ {v} \mathbf a = \frac{1}{2 \sqrt {( u ^ {2} + w ^ {2} ) ^ {3} } } ( w \mathbf a _ {u} - \mathbf a _ {w} ) + $$
$$ + \frac{1}{2 \sqrt {u ^ {2} + w ^ {2} } } \left ( \frac{\partial \mathbf a _ {u} }{\partial w } - \frac{\partial \mathbf a _ {w} }{\partial u } \right ) ; $$
$$ \mathop{\rm rot} _ {w} \mathbf a = \frac{1}{2w( u ^ {2} + w ^ {2} ) } \left ( \mathbf a _ {v} + u \frac{\partial \mathbf a _ {v} }{\partial u } \right ) - \frac{1}{2uv} \frac{\partial \mathbf a _ {u} }{\partial v } ; $$
$$ \Delta \phi = \frac{1}{4( u ^ {2} + w ^ {2} ) } \left [ \frac{\partial ^ {2} \phi }{\partial u ^ {2} } + \frac{1}{u} \frac{\partial \phi }{\partial u } \right . + $$
$$ + \left . \left ( \frac{1}{u ^ {2} } + \frac{1}{w ^ {2} } \right ) \frac{\partial ^ {2} \phi }{\partial v ^ {2} } + \frac{\partial ^ {2} \phi }{\partial w ^ {2} } + \frac{1}{w} \frac{\partial \phi }{\partial w } \right ] . $$
Comments
These coordinates are also called rotation parabolic coordinates.
References
| [a1] | R. Sauer (ed.) I. Szabó (ed.) , Mathematische Hilfsmittel des Ingenieurs , 1 , Springer (1967) pp. 96 |
Paraboloidal coordinates. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Paraboloidal_coordinates&oldid=11852