Namespaces
Variants
Actions

Difference between revisions of "Paraboloid"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
p0712801.png
 +
$#A+1 = 2 n = 0
 +
$#C+1 = 2 : ~/encyclopedia/old_files/data/P071/P.0701280 Paraboloid
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A non-closed non-central [[Surface of the second order|surface of the second order]]. The canonical equations of a paraboloid are
 
A non-closed non-central [[Surface of the second order|surface of the second order]]. The canonical equations of a paraboloid are
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071280/p0712801.png" /></td> </tr></table>
+
$$
 +
 
 +
\frac{x  ^ {2} }{p}
 +
+
 +
\frac{y  ^ {2} }{q}
 +
  = 2z,\ \
 +
p, q > 0,
 +
$$
  
 
for an [[Elliptic paraboloid|elliptic paraboloid]], and
 
for an [[Elliptic paraboloid|elliptic paraboloid]], and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071280/p0712802.png" /></td> </tr></table>
+
$$
 +
 
 +
\frac{x  ^ {2} }{p}
 +
-  
 +
\frac{y  ^ {2} }{q}
 +
  = 2z,\ \
 +
p, q > 0,
 +
$$
  
 
for a [[Hyperbolic paraboloid|hyperbolic paraboloid]].
 
for a [[Hyperbolic paraboloid|hyperbolic paraboloid]].
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Berger,  "Geometry" , '''II''' , Springer  (1987)  pp. Chapt. 15</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  D. Pedoe,  "Geometry" , Dover, reprint  (1988)  pp. 135, 398</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Berger,  "Geometry" , '''II''' , Springer  (1987)  pp. Chapt. 15</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  D. Pedoe,  "Geometry" , Dover, reprint  (1988)  pp. 135, 398</TD></TR></table>

Latest revision as of 08:05, 6 June 2020


A non-closed non-central surface of the second order. The canonical equations of a paraboloid are

$$ \frac{x ^ {2} }{p} + \frac{y ^ {2} }{q} = 2z,\ \ p, q > 0, $$

for an elliptic paraboloid, and

$$ \frac{x ^ {2} }{p} - \frac{y ^ {2} }{q} = 2z,\ \ p, q > 0, $$

for a hyperbolic paraboloid.

Comments

References

[a1] M. Berger, "Geometry" , II , Springer (1987) pp. Chapt. 15
[a2] D. Pedoe, "Geometry" , Dover, reprint (1988) pp. 135, 398
How to Cite This Entry:
Paraboloid. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Paraboloid&oldid=14665
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article