Difference between revisions of "Oscillation of a function"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | o0705101.png | ||
+ | $#A+1 = 27 n = 0 | ||
+ | $#C+1 = 27 : ~/encyclopedia/old_files/data/O070/O.0700510 Oscillation of a function | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | '' $ f $ | |
+ | on a set $ E $'' | ||
− | + | The difference between the least upper and the greatest lower bounds of the values of $ f $ | |
+ | on $ E $. | ||
+ | In other words, the oscillation of $ f $ | ||
+ | on $ E $ | ||
+ | is given by | ||
− | + | $$ | |
+ | \omega _ {E} ( f ) = \ | ||
+ | \sup _ {P ^ \prime , P ^ {\prime\prime} \in E } | ||
+ | \{ | f ( P ^ \prime ) - f ( P ^ {\prime\prime} ) | \} . | ||
+ | $$ | ||
− | + | If the function is unbounded on $ E $, | |
+ | its oscillation on $ E $ | ||
+ | is put equal to $ \infty $. | ||
+ | For constant functions on $ E $( | ||
+ | and only for these) the oscillation on $ E $ | ||
+ | is zero. If the function $ f $ | ||
+ | is defined on a subset $ E $ | ||
+ | of $ \mathbf R ^ {n} $, | ||
+ | then its oscillation at any point $ Q $ | ||
+ | of the closure of $ E $ | ||
+ | is defined by the formula | ||
+ | $$ | ||
+ | \omega _ {Q , E } ( f ) = \ | ||
+ | \inf _ {\begin{array}{c} | ||
+ | U \\ | ||
+ | Q \in U | ||
+ | \end{array} | ||
+ | } \omega _ {U \cap E } ( f ) , | ||
+ | $$ | ||
+ | where the infimum is taken over all neighbourhoods $ U $ | ||
+ | of $ Q $. | ||
+ | If $ Q \in E $, | ||
+ | then in order that $ f $ | ||
+ | be continuous at $ Q $ | ||
+ | with respect to the set $ E $ | ||
+ | it is necessary and sufficient that $ \omega _ {Q,E } ( f ) = 0 $. | ||
====Comments==== | ====Comments==== | ||
− | The function | + | The function $ Q \rightarrow \omega _ {Q,E } ( f ) $ |
+ | is called the oscillation function of $ f $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K.R. Stromberg, "Introduction to classical real analysis" , Wadsworth (1981) pp. 120</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R.R. Goldberg, "Methods of real analysis" , Blaisdell (1964) pp. 129</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K.R. Stromberg, "Introduction to classical real analysis" , Wadsworth (1981) pp. 120</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R.R. Goldberg, "Methods of real analysis" , Blaisdell (1964) pp. 129</TD></TR></table> |
Latest revision as of 08:04, 6 June 2020
$ f $
on a set $ E $
The difference between the least upper and the greatest lower bounds of the values of $ f $ on $ E $. In other words, the oscillation of $ f $ on $ E $ is given by
$$ \omega _ {E} ( f ) = \ \sup _ {P ^ \prime , P ^ {\prime\prime} \in E } \{ | f ( P ^ \prime ) - f ( P ^ {\prime\prime} ) | \} . $$
If the function is unbounded on $ E $, its oscillation on $ E $ is put equal to $ \infty $. For constant functions on $ E $( and only for these) the oscillation on $ E $ is zero. If the function $ f $ is defined on a subset $ E $ of $ \mathbf R ^ {n} $, then its oscillation at any point $ Q $ of the closure of $ E $ is defined by the formula
$$ \omega _ {Q , E } ( f ) = \ \inf _ {\begin{array}{c} U \\ Q \in U \end{array} } \omega _ {U \cap E } ( f ) , $$
where the infimum is taken over all neighbourhoods $ U $ of $ Q $. If $ Q \in E $, then in order that $ f $ be continuous at $ Q $ with respect to the set $ E $ it is necessary and sufficient that $ \omega _ {Q,E } ( f ) = 0 $.
Comments
The function $ Q \rightarrow \omega _ {Q,E } ( f ) $ is called the oscillation function of $ f $.
References
[a1] | K.R. Stromberg, "Introduction to classical real analysis" , Wadsworth (1981) pp. 120 |
[a2] | R.R. Goldberg, "Methods of real analysis" , Blaisdell (1964) pp. 129 |
Oscillation of a function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Oscillation_of_a_function&oldid=12236