Difference between revisions of "Orthogonality"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | o0704101.png | ||
+ | $#A+1 = 40 n = 0 | ||
+ | $#C+1 = 40 : ~/encyclopedia/old_files/data/O070/O.0700410 Orthogonality | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A generalization of the concept of perpendicularity of vectors in a Euclidean space. The most natural concept of orthogonality is put forward in the theory of Hilbert spaces. Two elements $ x $ | |
+ | and $ y $ | ||
+ | of a [[Hilbert space|Hilbert space]] $ H $ | ||
+ | are said to be orthogonal $ ( x \perp y) $ | ||
+ | if their [[Inner product|inner product]] is equal to zero ( $ ( x, y) = 0 $). | ||
+ | This concept of orthogonality in the particular case where $ H $ | ||
+ | is a Euclidean space coincides with the concept of perpendicularity of two vectors. In terms of this concept, in any Hilbert space Pythagoras' theorem holds: If an element $ x \in H $ | ||
+ | is equal to a finite or countable sum of pairwise orthogonal elements $ x _ {i} \in H $( | ||
+ | the countable sum $ \sum _ {i=} 1 ^ \infty x _ {i} $ | ||
+ | is understood in the sense of convergence of the series in the metric of $ H $), | ||
+ | then $ \| x \| ^ {2} = \sum _ {i=} 1 ^ \infty \| x _ {i} \| ^ {2} $( | ||
+ | see [[Parseval equality|Parseval equality]]). | ||
− | + | A complete, countable, orthonormal system $ \{ x _ {i} \} $ | |
+ | in a separable Hilbert space is the analogue of a complete system of pairwise orthonormal vectors in a finite-dimensional Euclidean space: Any element $ x \in H $ | ||
+ | can be uniquely represented as the sum $ \sum _ {i=} 1 ^ \infty c _ {i} x _ {i} $, | ||
+ | where $ c _ {i} x _ {i} = ( x, x _ {i} ) x _ {i} $ | ||
+ | is the orthogonal projection of the element $ x $ | ||
+ | onto the span of the vector $ x _ {i} $. | ||
− | in the | + | E.g., in the function space $ L _ {2} [ a, b] $, |
+ | if $ \{ \phi _ {k} \} $ | ||
+ | is a complete orthonormal system, then for every $ f \in L _ {2} [ a, b] $, | ||
− | + | $$ | |
+ | f = \sum _ { k= } 1 ^ \infty c _ {k} \phi _ {k} $$ | ||
− | + | in the metric of the space $ L _ {2} [ a, b] $, | |
+ | where | ||
− | + | $$ | |
+ | c _ {k} = \int\limits _ { a } ^ { b } f ( x) \overline{ {\phi _ {k} ( x) }}\; dx. | ||
+ | $$ | ||
− | + | When the $ \phi _ {k} $ | |
+ | are bounded functions, the coefficients $ c _ {k} $ | ||
+ | can be defined as above for any integrable function. In these cases the question of the convergence of a corresponding series in one sense or another is of interest (see [[Trigonometric system|Trigonometric system]]; [[Haar system|Haar system]]). With respect to functions, therefore, the term "orthogonality" is used in a broader sense: Two functions $ f $ | ||
+ | and $ g $ | ||
+ | which are integrable on the segment $ [ a, b] $ | ||
+ | are orthogonal if | ||
− | Definitions of orthogonality of elements of an arbitrary normed linear space also exist. One of them (see [[#References|[4]]]) is as follows: An element | + | $$ |
+ | \int\limits _ { a } ^ { b } f( x) g( x) dx = 0 | ||
+ | $$ | ||
+ | |||
+ | (for the integral to exist, it is usually required that $ f \in L _ {p} [ a, b] $, | ||
+ | $ 1 \leq p \leq \infty $, | ||
+ | $ g \in L _ {q} [ a, b] $, | ||
+ | $ p ^ {- 1 } + q ^ {- 1 } = 1 $, | ||
+ | where $ L _ \infty [ a, b] $ | ||
+ | is the set of bounded measurable functions). | ||
+ | |||
+ | Definitions of orthogonality of elements of an arbitrary normed linear space also exist. One of them (see [[#References|[4]]]) is as follows: An element $ x $ | ||
+ | of a real normed space $ B $ | ||
+ | is considered orthogonal to the element $ y $ | ||
+ | if $ \| x \| \leq \| x + ky \| $ | ||
+ | for all real $ k $. | ||
+ | In terms of this concept certain necessary and sufficient conditions have been established under which a scalar (inner) product of elements of $ B $ | ||
+ | can be defined (see [[#References|[5]]], [[#References|[6]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.V. Kantorovich, G.P. Akilov, "Functionalanalysis in normierten Räumen" , Akademie Verlag (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Dunford, J.T. Schwartz, "Linear operators. General theory" , '''1''' , Wiley, reprint (1988)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> G. Birkhoff, "Orthogonality in linear metric spaces" ''Duke Math. J.'' , '''1''' (1935) pp. 169–172</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> R. James, "Orthogonality and linear functionals in normed linear spaces" ''Trans. Amer. Math. Soc.'' , '''61''' (1947) pp. 265–292</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> R. James, "Inner products in normed linear spaces" ''Bull. Amer. Math. Soc.'' , '''53''' (1947) pp. 559–566</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.V. Kantorovich, G.P. Akilov, "Functionalanalysis in normierten Räumen" , Akademie Verlag (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Dunford, J.T. Schwartz, "Linear operators. General theory" , '''1''' , Wiley, reprint (1988)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> G. Birkhoff, "Orthogonality in linear metric spaces" ''Duke Math. J.'' , '''1''' (1935) pp. 169–172</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> R. James, "Orthogonality and linear functionals in normed linear spaces" ''Trans. Amer. Math. Soc.'' , '''61''' (1947) pp. 265–292</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> R. James, "Inner products in normed linear spaces" ''Bull. Amer. Math. Soc.'' , '''53''' (1947) pp. 559–566</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D. Amir, "Characterizations of inner product spaces" , Birkhäuser (1986)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N.I. [N.I. Akhiezer] Achieser, I.M. [I.M. Glaz'man] Glasman, "Theorie der linearen Operatoren im Hilbert Raum" , Akademie Verlag (1958) (Translated from Russian)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> V.I. Istrăţescu, "Inner product structures" , Reidel (1987)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D. Amir, "Characterizations of inner product spaces" , Birkhäuser (1986)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N.I. [N.I. Akhiezer] Achieser, I.M. [I.M. Glaz'man] Glasman, "Theorie der linearen Operatoren im Hilbert Raum" , Akademie Verlag (1958) (Translated from Russian)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> V.I. Istrăţescu, "Inner product structures" , Reidel (1987)</TD></TR></table> |
Revision as of 08:04, 6 June 2020
A generalization of the concept of perpendicularity of vectors in a Euclidean space. The most natural concept of orthogonality is put forward in the theory of Hilbert spaces. Two elements $ x $
and $ y $
of a Hilbert space $ H $
are said to be orthogonal $ ( x \perp y) $
if their inner product is equal to zero ( $ ( x, y) = 0 $).
This concept of orthogonality in the particular case where $ H $
is a Euclidean space coincides with the concept of perpendicularity of two vectors. In terms of this concept, in any Hilbert space Pythagoras' theorem holds: If an element $ x \in H $
is equal to a finite or countable sum of pairwise orthogonal elements $ x _ {i} \in H $(
the countable sum $ \sum _ {i=} 1 ^ \infty x _ {i} $
is understood in the sense of convergence of the series in the metric of $ H $),
then $ \| x \| ^ {2} = \sum _ {i=} 1 ^ \infty \| x _ {i} \| ^ {2} $(
see Parseval equality).
A complete, countable, orthonormal system $ \{ x _ {i} \} $ in a separable Hilbert space is the analogue of a complete system of pairwise orthonormal vectors in a finite-dimensional Euclidean space: Any element $ x \in H $ can be uniquely represented as the sum $ \sum _ {i=} 1 ^ \infty c _ {i} x _ {i} $, where $ c _ {i} x _ {i} = ( x, x _ {i} ) x _ {i} $ is the orthogonal projection of the element $ x $ onto the span of the vector $ x _ {i} $.
E.g., in the function space $ L _ {2} [ a, b] $, if $ \{ \phi _ {k} \} $ is a complete orthonormal system, then for every $ f \in L _ {2} [ a, b] $,
$$ f = \sum _ { k= } 1 ^ \infty c _ {k} \phi _ {k} $$
in the metric of the space $ L _ {2} [ a, b] $, where
$$ c _ {k} = \int\limits _ { a } ^ { b } f ( x) \overline{ {\phi _ {k} ( x) }}\; dx. $$
When the $ \phi _ {k} $ are bounded functions, the coefficients $ c _ {k} $ can be defined as above for any integrable function. In these cases the question of the convergence of a corresponding series in one sense or another is of interest (see Trigonometric system; Haar system). With respect to functions, therefore, the term "orthogonality" is used in a broader sense: Two functions $ f $ and $ g $ which are integrable on the segment $ [ a, b] $ are orthogonal if
$$ \int\limits _ { a } ^ { b } f( x) g( x) dx = 0 $$
(for the integral to exist, it is usually required that $ f \in L _ {p} [ a, b] $, $ 1 \leq p \leq \infty $, $ g \in L _ {q} [ a, b] $, $ p ^ {- 1 } + q ^ {- 1 } = 1 $, where $ L _ \infty [ a, b] $ is the set of bounded measurable functions).
Definitions of orthogonality of elements of an arbitrary normed linear space also exist. One of them (see [4]) is as follows: An element $ x $ of a real normed space $ B $ is considered orthogonal to the element $ y $ if $ \| x \| \leq \| x + ky \| $ for all real $ k $. In terms of this concept certain necessary and sufficient conditions have been established under which a scalar (inner) product of elements of $ B $ can be defined (see [5], [6]).
References
[1] | L.V. Kantorovich, G.P. Akilov, "Functionalanalysis in normierten Räumen" , Akademie Verlag (1964) (Translated from Russian) |
[2] | N. Dunford, J.T. Schwartz, "Linear operators. General theory" , 1 , Wiley, reprint (1988) |
[3] | S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951) |
[4] | G. Birkhoff, "Orthogonality in linear metric spaces" Duke Math. J. , 1 (1935) pp. 169–172 |
[5] | R. James, "Orthogonality and linear functionals in normed linear spaces" Trans. Amer. Math. Soc. , 61 (1947) pp. 265–292 |
[6] | R. James, "Inner products in normed linear spaces" Bull. Amer. Math. Soc. , 53 (1947) pp. 559–566 |
Comments
References
[a1] | D. Amir, "Characterizations of inner product spaces" , Birkhäuser (1986) |
[a2] | N.I. [N.I. Akhiezer] Achieser, I.M. [I.M. Glaz'man] Glasman, "Theorie der linearen Operatoren im Hilbert Raum" , Akademie Verlag (1958) (Translated from Russian) |
[a3] | V.I. Istrăţescu, "Inner product structures" , Reidel (1987) |
Orthogonality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Orthogonality&oldid=11950