Difference between revisions of "Orthogonal projector"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | o0703601.png | ||
+ | $#A+1 = 33 n = 0 | ||
+ | $#C+1 = 33 : ~/encyclopedia/old_files/data/O070/O.0700360 Orthogonal projector, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''orthoprojector'' | ''orthoprojector'' | ||
− | A mapping | + | A mapping $ P _ {L} $ |
+ | of a [[Hilbert space|Hilbert space]] $ H $ | ||
+ | onto a subspace $ L $ | ||
+ | of it such that $ x- P _ {L} x $ | ||
+ | is orthogonal to $ P _ {L} x $: | ||
+ | $ x- P _ {L} x \perp P _ {L} x $. | ||
+ | An orthogonal projector is a bounded self-adjoint operator, acting on a Hilbert space $ H $, | ||
+ | such that $ P _ {L} ^ {2} = P _ {L} $ | ||
+ | and $ \| P _ {L} \| = 1 $. | ||
+ | On the other hand, if a bounded [[Self-adjoint operator|self-adjoint operator]] acting on a Hilbert space $ H $ | ||
+ | such that $ P ^ {2} = P $ | ||
+ | is given, then $ L _ {P} = \{ {Px } : {x \in H } \} $ | ||
+ | is a subspace, and $ P $ | ||
+ | is an orthogonal projector onto $ L _ {P} $. | ||
+ | Two orthogonal projectors $ P _ { L _ 1 } , P _ { L _ 2 } $ | ||
+ | are called orthogonal if $ P _ { L _ 1 } P _ { L _ 2 } = P _ { L _ 2 } P _ { L _ 1 } = 0 $; | ||
+ | this is equivalent to the condition that $ L _ {1} \perp L _ {2} $. | ||
− | Properties of an orthogonal projector. 1) In order that the sum | + | Properties of an orthogonal projector. 1) In order that the sum $ P _ { L _ 1 } + P _ { L _ 2 } $ |
+ | of two orthogonal projectors is itself an orthogonal projector, it is necessary and sufficient that $ P _ { L _ 1 } P _ { L _ 2 } = 0 $, | ||
+ | in this case $ P _ { L _ 1 } + P _ { L _ 2 } = P _ {L _ {1} \oplus L _ {2} } $; | ||
+ | 2) in order that the composite $ P _ { L _ 1 } P _ { L _ 2 } $ | ||
+ | is an orthogonal projector, it is necessary and sufficient that $ P _ { L _ 1 } P _ { L _ 2 } = P _ { L _ 2 } P _ { L _ 1 } $, | ||
+ | in this case $ P _ { L _ 1 } P _ { L _ 2 } = P _ {L _ {1} \cap L _ {2} } $. | ||
− | An orthogonal projector | + | An orthogonal projector $ P _ {L ^ \prime } $ |
+ | is called a part of an orthogonal projector $ P _ {L} $ | ||
+ | if $ L ^ \prime $ | ||
+ | is a subspace of $ L $. | ||
+ | Under this condition $ P _ {L} - P _ {L ^ \prime } $ | ||
+ | is an orthogonal projector on $ L \ominus L ^ \prime $— | ||
+ | the orthogonal complement to $ L ^ \prime $ | ||
+ | in $ L $. | ||
+ | In particular, $ I - P _ {L} $ | ||
+ | is an orthogonal projector on $ H \ominus L $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.A. Lyusternik, V.I. Sobolev, "Elements of functional analysis" , Wiley & Hindustan Publ. Comp. (1974) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.I. [N.I. Akhiezer] Achieser, I.M. [I.M. Glaz'man] Glasman, "Theorie der linearen Operatoren im Hilbert Raum" , Akademie Verlag (1958) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> F. Riesz, B. Szökefalvi-Nagy, "Functional analysis" , F. Ungar (1955) (Translated from French)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.A. Lyusternik, V.I. Sobolev, "Elements of functional analysis" , Wiley & Hindustan Publ. Comp. (1974) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.I. [N.I. Akhiezer] Achieser, I.M. [I.M. Glaz'man] Glasman, "Theorie der linearen Operatoren im Hilbert Raum" , Akademie Verlag (1958) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> F. Riesz, B. Szökefalvi-Nagy, "Functional analysis" , F. Ungar (1955) (Translated from French)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
Cf. also [[Projector|Projector]]. | Cf. also [[Projector|Projector]]. |
Latest revision as of 08:04, 6 June 2020
orthoprojector
A mapping $ P _ {L} $ of a Hilbert space $ H $ onto a subspace $ L $ of it such that $ x- P _ {L} x $ is orthogonal to $ P _ {L} x $: $ x- P _ {L} x \perp P _ {L} x $. An orthogonal projector is a bounded self-adjoint operator, acting on a Hilbert space $ H $, such that $ P _ {L} ^ {2} = P _ {L} $ and $ \| P _ {L} \| = 1 $. On the other hand, if a bounded self-adjoint operator acting on a Hilbert space $ H $ such that $ P ^ {2} = P $ is given, then $ L _ {P} = \{ {Px } : {x \in H } \} $ is a subspace, and $ P $ is an orthogonal projector onto $ L _ {P} $. Two orthogonal projectors $ P _ { L _ 1 } , P _ { L _ 2 } $ are called orthogonal if $ P _ { L _ 1 } P _ { L _ 2 } = P _ { L _ 2 } P _ { L _ 1 } = 0 $; this is equivalent to the condition that $ L _ {1} \perp L _ {2} $.
Properties of an orthogonal projector. 1) In order that the sum $ P _ { L _ 1 } + P _ { L _ 2 } $ of two orthogonal projectors is itself an orthogonal projector, it is necessary and sufficient that $ P _ { L _ 1 } P _ { L _ 2 } = 0 $, in this case $ P _ { L _ 1 } + P _ { L _ 2 } = P _ {L _ {1} \oplus L _ {2} } $; 2) in order that the composite $ P _ { L _ 1 } P _ { L _ 2 } $ is an orthogonal projector, it is necessary and sufficient that $ P _ { L _ 1 } P _ { L _ 2 } = P _ { L _ 2 } P _ { L _ 1 } $, in this case $ P _ { L _ 1 } P _ { L _ 2 } = P _ {L _ {1} \cap L _ {2} } $.
An orthogonal projector $ P _ {L ^ \prime } $ is called a part of an orthogonal projector $ P _ {L} $ if $ L ^ \prime $ is a subspace of $ L $. Under this condition $ P _ {L} - P _ {L ^ \prime } $ is an orthogonal projector on $ L \ominus L ^ \prime $— the orthogonal complement to $ L ^ \prime $ in $ L $. In particular, $ I - P _ {L} $ is an orthogonal projector on $ H \ominus L $.
References
[1] | L.A. Lyusternik, V.I. Sobolev, "Elements of functional analysis" , Wiley & Hindustan Publ. Comp. (1974) (Translated from Russian) |
[2] | N.I. [N.I. Akhiezer] Achieser, I.M. [I.M. Glaz'man] Glasman, "Theorie der linearen Operatoren im Hilbert Raum" , Akademie Verlag (1958) (Translated from Russian) |
[3] | F. Riesz, B. Szökefalvi-Nagy, "Functional analysis" , F. Ungar (1955) (Translated from French) |
Comments
Cf. also Projector.
Orthogonal projector. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Orthogonal_projector&oldid=14998