Difference between revisions of "One-parameter semi-group"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | o0681901.png | ||
+ | $#A+1 = 13 n = 0 | ||
+ | $#C+1 = 13 : ~/encyclopedia/old_files/data/O068/O.0608190 One\AAhparameter semi\AAhgroup | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A family of operators $ T ( t) $, | |
+ | $ t > 0 $, | ||
+ | acting in a Banach or topological vector space $ X $, | ||
+ | with the property | ||
+ | |||
+ | $$ | ||
+ | T ( t + \tau ) x = \ | ||
+ | T ( t) [ T ( \tau ) x],\ \ | ||
+ | t, \tau > 0,\ \ | ||
+ | x \in X. | ||
+ | $$ | ||
+ | |||
+ | If the operators $ T ( t) $ | ||
+ | are linear, bounded and are acting in a Banach space $ X $, | ||
+ | then the measurability of all the functions $ T ( t) x $, | ||
+ | $ x \in X $, | ||
+ | implies their continuity. The function $ \| T ( t) \| $ | ||
+ | increases no faster than exponentially at infinity. The classification of one-parameter semi-groups is based on their behaviour as $ t \rightarrow 0 $. | ||
+ | In the simplest case $ T ( t) $ | ||
+ | is strongly convergent to the identity operator as $ t \rightarrow 0 $( | ||
+ | see [[Semi-group of operators|Semi-group of operators]]). | ||
An important characteristic of a one-parameter semi-group is the [[Generating operator of a semi-group|generating operator of a semi-group]]. The basic problem in the theory of one-parameter semi-groups is the establishment of relations between properties of semi-groups and their generating operators. One-parameter semi-groups of continuous linear operators in locally convex spaces have been studied rather completely. | An important characteristic of a one-parameter semi-group is the [[Generating operator of a semi-group|generating operator of a semi-group]]. The basic problem in the theory of one-parameter semi-groups is the establishment of relations between properties of semi-groups and their generating operators. One-parameter semi-groups of continuous linear operators in locally convex spaces have been studied rather completely. | ||
− | One-parameter semi-groups of non-linear operators in Banach spaces have been investigated in the case when the operators | + | One-parameter semi-groups of non-linear operators in Banach spaces have been investigated in the case when the operators $ T ( t) $ |
+ | are contractive. There are deep connections here with the theory of dissipative operators. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> K. Yosida, "Functional analysis" , Springer (1980) pp. Chapt. 8, §1</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.G. Krein, "Linear differential equations in Banach space" , ''Transl. Math. Monogr.'' , '''29''' , Amer. Math. Soc. (1971) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E. Hille, R.S. Phillips, "Functional analysis and semi-groups" , Amer. Math. Soc. (1957)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> P. Butzer, H. Berens, "Semigroups of operators and approximation" , Springer (1967)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> V. Barbu, "Nonlinear semigroups and differential equations in Banach spaces" , Ed. Academici (1976) (Translated from Rumanian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> E.B. Davies, "One-parameter semigroups" , Acad. Press (1980)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> J.A. Goldstein, "Semigroups of linear operators and applications" , Oxford Univ. Press (1985)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> K. Yosida, "Functional analysis" , Springer (1980) pp. Chapt. 8, §1 {{MR|0617913}} {{ZBL|0435.46002}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.G. Krein, "Linear differential equations in Banach space" , ''Transl. Math. Monogr.'' , '''29''' , Amer. Math. Soc. (1971) (Translated from Russian) {{MR|0342804}} {{ZBL|0179.20701}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E. Hille, R.S. Phillips, "Functional analysis and semi-groups" , Amer. Math. Soc. (1957) {{MR|0089373}} {{ZBL|0392.46001}} {{ZBL|0033.06501}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> P. Butzer, H. Berens, "Semigroups of operators and approximation" , Springer (1967) {{MR|230022}} {{ZBL|}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> V. Barbu, "Nonlinear semigroups and differential equations in Banach spaces" , Ed. Academici (1976) (Translated from Rumanian) {{MR|0390843}} {{ZBL|0328.47035}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> E.B. Davies, "One-parameter semigroups" , Acad. Press (1980) {{MR|0591851}} {{ZBL|0457.47030}} </TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> J.A. Goldstein, "Semigroups of linear operators and applications" , Oxford Univ. Press (1985) {{MR|0790497}} {{ZBL|0592.47034}} </TD></TR></table> |
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Pazy, "Semigroups of linear operators and applications to partial differential equations" , Springer (1983)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> Ph. Clément, H.J.A.M. Heijmans, S. Angenent, C.J. van Duijn, B. de Pagter, "One-parameter semigroups" , ''CWI Monographs'' , '''5''' , North-Holland (1987)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H. Brezis, "Operateurs maximaux monotone et semigroups de contractions dans les espaces de Hilbert" , North-Holland (1973)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J. van Casteren, "Generators of strongly continuous semigroups" , Pitman (1985)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> R. Nagel (ed.) , ''One-parameter semigroups of positive operators'' , Springer (1986)</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Pazy, "Semigroups of linear operators and applications to partial differential equations" , Springer (1983) {{MR|0710486}} {{ZBL|0516.47023}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> Ph. Clément, H.J.A.M. Heijmans, S. Angenent, C.J. van Duijn, B. de Pagter, "One-parameter semigroups" , ''CWI Monographs'' , '''5''' , North-Holland (1987) {{MR|0915552}} {{ZBL|0636.47051}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H. Brezis, "Operateurs maximaux monotone et semigroups de contractions dans les espaces de Hilbert" , North-Holland (1973) {{MR|348562}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J. van Casteren, "Generators of strongly continuous semigroups" , Pitman (1985) {{MR|}} {{ZBL|0576.47023}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> R. Nagel (ed.) , ''One-parameter semigroups of positive operators'' , Springer (1986) {{MR|0839450}} {{ZBL|0585.47030}} </TD></TR></table> |
Latest revision as of 08:04, 6 June 2020
A family of operators $ T ( t) $,
$ t > 0 $,
acting in a Banach or topological vector space $ X $,
with the property
$$ T ( t + \tau ) x = \ T ( t) [ T ( \tau ) x],\ \ t, \tau > 0,\ \ x \in X. $$
If the operators $ T ( t) $ are linear, bounded and are acting in a Banach space $ X $, then the measurability of all the functions $ T ( t) x $, $ x \in X $, implies their continuity. The function $ \| T ( t) \| $ increases no faster than exponentially at infinity. The classification of one-parameter semi-groups is based on their behaviour as $ t \rightarrow 0 $. In the simplest case $ T ( t) $ is strongly convergent to the identity operator as $ t \rightarrow 0 $( see Semi-group of operators).
An important characteristic of a one-parameter semi-group is the generating operator of a semi-group. The basic problem in the theory of one-parameter semi-groups is the establishment of relations between properties of semi-groups and their generating operators. One-parameter semi-groups of continuous linear operators in locally convex spaces have been studied rather completely.
One-parameter semi-groups of non-linear operators in Banach spaces have been investigated in the case when the operators $ T ( t) $ are contractive. There are deep connections here with the theory of dissipative operators.
References
[1] | K. Yosida, "Functional analysis" , Springer (1980) pp. Chapt. 8, §1 MR0617913 Zbl 0435.46002 |
[2] | S.G. Krein, "Linear differential equations in Banach space" , Transl. Math. Monogr. , 29 , Amer. Math. Soc. (1971) (Translated from Russian) MR0342804 Zbl 0179.20701 |
[3] | E. Hille, R.S. Phillips, "Functional analysis and semi-groups" , Amer. Math. Soc. (1957) MR0089373 Zbl 0392.46001 Zbl 0033.06501 |
[4] | P. Butzer, H. Berens, "Semigroups of operators and approximation" , Springer (1967) MR230022 |
[5] | V. Barbu, "Nonlinear semigroups and differential equations in Banach spaces" , Ed. Academici (1976) (Translated from Rumanian) MR0390843 Zbl 0328.47035 |
[6] | E.B. Davies, "One-parameter semigroups" , Acad. Press (1980) MR0591851 Zbl 0457.47030 |
[7] | J.A. Goldstein, "Semigroups of linear operators and applications" , Oxford Univ. Press (1985) MR0790497 Zbl 0592.47034 |
Comments
References
[a1] | A. Pazy, "Semigroups of linear operators and applications to partial differential equations" , Springer (1983) MR0710486 Zbl 0516.47023 |
[a2] | Ph. Clément, H.J.A.M. Heijmans, S. Angenent, C.J. van Duijn, B. de Pagter, "One-parameter semigroups" , CWI Monographs , 5 , North-Holland (1987) MR0915552 Zbl 0636.47051 |
[a3] | H. Brezis, "Operateurs maximaux monotone et semigroups de contractions dans les espaces de Hilbert" , North-Holland (1973) MR348562 |
[a4] | J. van Casteren, "Generators of strongly continuous semigroups" , Pitman (1985) Zbl 0576.47023 |
[a5] | R. Nagel (ed.) , One-parameter semigroups of positive operators , Springer (1986) MR0839450 Zbl 0585.47030 |
One-parameter semi-group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=One-parameter_semi-group&oldid=13455