|
|
Line 1: |
Line 1: |
| + | <!-- |
| + | n0675101.png |
| + | $#A+1 = 103 n = 0 |
| + | $#C+1 = 103 : ~/encyclopedia/old_files/data/N067/N.0607510 Normal family |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| ''of analytic functions in a domain'' | | ''of analytic functions in a domain'' |
| | | |
− | A family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n0675101.png" /> of single-valued analytic functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n0675102.png" /> of complex variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n0675103.png" /> in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n0675104.png" /> in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n0675105.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n0675106.png" />, such that from any sequence of functions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n0675107.png" /> one can extract a subsequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n0675108.png" /> that converges uniformly on compact subsets in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n0675109.png" /> to an analytic function or to infinity. Uniform convergence to infinity on compact subsets means, by definition, that for any compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751010.png" /> and any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751011.png" /> one can find an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751012.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751013.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751015.png" />. | + | A family $ S $ |
| + | of single-valued analytic functions $ f ( z) $ |
| + | of complex variables $ z = ( z _ {1} \dots z _ {n} ) $ |
| + | in a domain $ D $ |
| + | in the space $ \mathbf C ^ {n} $, |
| + | $ n \geq 1 $, |
| + | such that from any sequence of functions in $ S $ |
| + | one can extract a subsequence $ \{ f _ {v} ( z) \} $ |
| + | that converges uniformly on compact subsets in $ D $ |
| + | to an analytic function or to infinity. Uniform convergence to infinity on compact subsets means, by definition, that for any compact set $ K \subset D $ |
| + | and any $ M > 0 $ |
| + | one can find an $ N = N ( K, M) $ |
| + | such that $ | f _ {v} ( z) | > M $ |
| + | for all $ v > N $, |
| + | $ z \in K $. |
| + | |
| + | A family $ S $ |
| + | is called a normal family at a point $ z ^ {0} \in D $ |
| + | if $ S $ |
| + | is normal in some ball with centre at $ z ^ {0} $. |
| + | A family $ S $ |
| + | is normal in $ D $ |
| + | if and only if it is normal at every point $ z ^ {0} \in D $. |
| + | Every compact family of holomorphic functions is normal; the converse conclusion is false (see [[Compactness principle|Compactness principle]]). If a family $ S $ |
| + | of holomorphic functions in a domain $ D \subset \mathbf C ^ {n} $ |
| + | has the property that all functions $ f ( z) \in S $ |
| + | omit two fixed values, then $ S $ |
| + | is normal in $ D $( |
| + | Montel's theorem). This criterion of normality considerably simplifies the investigation of analytic functions in a neighbourhood of an [[Essential singular point|essential singular point]] (see also [[Picard theorem|Picard theorem]]). |
| + | |
| + | A normal family of meromorphic functions in a domain $ D \subset \mathbf C = \mathbf C ^ {1} $ |
| + | is defined similarly: A family $ S $ |
| + | of meromorphic functions in $ D $ |
| + | is normal if from every sequence of functions in $ S $ |
| + | one can extract a subsequence $ \{ f _ {v} ( z) \} $ |
| + | that converges uniformly on compact subsets in $ D $ |
| + | to a meromorphic function or to infinity. By definition, $ \{ f _ {v} ( z) \} $ |
| + | converges uniformly on compact subsets in $ D $ |
| + | to $ f ( z) $( |
| + | the case $ f ( z) \equiv \infty $ |
| + | is excluded) if for any compact set $ K \subset D $ |
| + | and any $ \epsilon > 0 $ |
| + | there is an $ N = N ( \epsilon , K) $ |
| + | and a disc $ B = B ( z ^ {0} , r) $ |
| + | of radius $ r = r ( \epsilon , K) $ |
| + | with centre at some point $ z ^ {0} \in K $ |
| + | such that for $ v > N $, |
| + | |
| + | $$ |
| + | | f _ {v} ( z) - f ( z) | < \epsilon ,\ \ |
| + | z \in B, |
| + | $$ |
| + | |
| + | when $ f ( z ^ {0} ) \neq \infty $, |
| + | or |
| | | |
− | A family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751016.png" /> is called a normal family at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751017.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751018.png" /> is normal in some ball with centre at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751019.png" />. A family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751020.png" /> is normal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751021.png" /> if and only if it is normal at every point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751022.png" />. Every compact family of holomorphic functions is normal; the converse conclusion is false (see [[Compactness principle|Compactness principle]]). If a family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751023.png" /> of holomorphic functions in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751024.png" /> has the property that all functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751025.png" /> omit two fixed values, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751026.png" /> is normal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751027.png" /> (Montel's theorem). This criterion of normality considerably simplifies the investigation of analytic functions in a neighbourhood of an [[Essential singular point|essential singular point]] (see also [[Picard theorem|Picard theorem]]).
| + | $$ |
| + | \left | |
| + | \frac{1}{f _ {v} ( z) } |
| + | - { |
| + | \frac{1}{f ( z) } |
| + | } \right | |
| + | < \epsilon ,\ \ |
| + | z \in B, |
| + | $$ |
| | | |
− | A normal family of meromorphic functions in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751028.png" /> is defined similarly: A family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751029.png" /> of meromorphic functions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751030.png" /> is normal if from every sequence of functions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751031.png" /> one can extract a subsequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751032.png" /> that converges uniformly on compact subsets in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751033.png" /> to a meromorphic function or to infinity. By definition, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751034.png" /> converges uniformly on compact subsets in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751035.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751036.png" /> (the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751037.png" /> is excluded) if for any compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751038.png" /> and any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751039.png" /> there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751040.png" /> and a disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751041.png" /> of radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751042.png" /> with centre at some point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751043.png" /> such that for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751044.png" />,
| + | when $ f ( z ^ {0} ) = \infty $. |
| + | If a family $ S $ |
| + | of meromorphic functions in a domain $ D \subset \mathbf C $ |
| + | has the property that all functions $ f \in S $ |
| + | omit three fixed values, then $ S $ |
| + | is normal (Montel's theorem). A family $ S $ |
| + | of meromorphic functions is normal in a domain $ D \subset \mathbf C $ |
| + | if and only if |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751045.png" /></td> </tr></table>
| + | $$ |
| + | \sup \{ {\rho ( f ( z)) } : {f \in S } \} |
| + | < \infty |
| + | $$ |
| | | |
− | when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751046.png" />, or
| + | on every compact set $ K \subset D $, |
| + | where |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751047.png" /></td> </tr></table>
| + | $$ |
| + | \rho ( f ( z)) = \ |
| | | |
− | when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751048.png" />. If a family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751049.png" /> of meromorphic functions in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751050.png" /> has the property that all functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751051.png" /> omit three fixed values, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751052.png" /> is normal (Montel's theorem). A family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751053.png" /> of meromorphic functions is normal in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751054.png" /> if and only if
| + | \frac{| f ^ { \prime } ( z) | }{1 + | f ( z) | ^ {2} } |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751055.png" /></td> </tr></table>
| + | $$ |
| | | |
− | on every compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751056.png" />, where
| + | is the so-called spherical derivative of $ f ( z) $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751057.png" /></td> </tr></table>
| + | From the 1930s onwards great value was attached to the study of [[Boundary properties of analytic functions|boundary properties of analytic functions]] (see also [[Cluster set|Cluster set]], [[#References|[3]]], [[#References|[4]]]). A meromorphic function $ f ( z) $ |
| + | in a simply-connected domain $ D \subset \mathbf C $ |
| + | is said to be a normal function in the domain $ D $ |
| + | if the family $ \{ f ( \gamma ( z)) \} $ |
| + | is normal in $ D $, |
| + | where $ \gamma ( z) $ |
| + | ranges over the family of all conformal automorphisms of $ D $. |
| + | A function $ f ( z) $ |
| + | is called normal in a multiply-connected domain $ D $ |
| + | if it is normal on the [[Universal covering|universal covering]] surface of $ D $. |
| + | If a meromorphic function $ f ( z) $ |
| + | in $ D $ |
| + | omits three values, then $ f ( z) $ |
| + | is normal. For $ f ( z) $, |
| + | $ f ( z) \neq \textrm{ const } $, |
| + | to be normal in the unit disc $ G = \{ {z \in \mathbf C } : {| z | < 1 } \} $ |
| + | it is necessary and sufficient that |
| | | |
− | is the so-called spherical derivative of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751058.png" />.
| + | $$ |
| | | |
− | From the 1930s onwards great value was attached to the study of [[Boundary properties of analytic functions|boundary properties of analytic functions]] (see also [[Cluster set|Cluster set]], [[#References|[3]]], [[#References|[4]]]). A meromorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751059.png" /> in a simply-connected domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751060.png" /> is said to be a normal function in the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751061.png" /> if the family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751062.png" /> is normal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751063.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751064.png" /> ranges over the family of all conformal automorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751065.png" />. A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751066.png" /> is called normal in a multiply-connected domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751067.png" /> if it is normal on the [[Universal covering|universal covering]] surface of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751068.png" />. If a meromorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751069.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751070.png" /> omits three values, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751071.png" /> is normal. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751072.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751073.png" />, to be normal in the unit disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751074.png" /> it is necessary and sufficient that
| + | \frac{| f ^ { \prime } ( z) | }{1 + | f ( z) | ^ {2} } |
| + | < \ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751075.png" /></td> </tr></table>
| + | \frac{c}{1 - | z | ^ {2} } |
| + | ,\ \ |
| + | z \in G,\ \ |
| + | c = c ( f ) = \textrm{ const } . |
| + | $$ |
| | | |
− | For a normal meromorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751076.png" /> in the unit disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751077.png" /> the existence of an [[Asymptotic value|asymptotic value]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751078.png" /> at a boundary point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751079.png" /> implies that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751080.png" /> is a non-tangential boundary value (cf. [[Angular boundary value|Angular boundary value]]) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751081.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751082.png" />. However, a meromorphic normal function in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751083.png" /> need not have asymptotic values at all. On the other hand, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751084.png" /> is a holomorphic normal function in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751085.png" />, then non-tangential boundary values exist even on a set of points of the unit circle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751086.png" /> that is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751087.png" />. | + | For a normal meromorphic function $ f ( z) $ |
| + | in the unit disc $ G $ |
| + | the existence of an [[Asymptotic value|asymptotic value]] $ \alpha $ |
| + | at a boundary point $ \zeta \in \Gamma = \{ {\zeta \in \mathbf C } : {| \zeta | = 1 } \} $ |
| + | implies that $ \alpha $ |
| + | is a non-tangential boundary value (cf. [[Angular boundary value|Angular boundary value]]) of $ f ( z) $ |
| + | at $ \zeta $. |
| + | However, a meromorphic normal function in $ G $ |
| + | need not have asymptotic values at all. On the other hand, if $ f ( z) $ |
| + | is a holomorphic normal function in $ G $, |
| + | then non-tangential boundary values exist even on a set of points of the unit circle $ \Gamma $ |
| + | that is dense in $ \Gamma $. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P. Montel, "Leçons sur les familles normales de fonctions analytiques et leurs applications" , Gauthier-Villars (1927)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.I. Markushevich, "Theory of functions of a complex variable" , '''2''' , Chelsea (1977) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.F. Collingwood, A.J. Lohwater, "The theory of cluster sets" , Cambridge Univ. Press (1966) pp. Chapt. 1;6</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A. Lohwater, "The boundary behaviour of analytic functions" ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''10''' (1973) pp. 99–259 (In Russian)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P. Montel, "Leçons sur les familles normales de fonctions analytiques et leurs applications" , Gauthier-Villars (1927)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.I. Markushevich, "Theory of functions of a complex variable" , '''2''' , Chelsea (1977) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.F. Collingwood, A.J. Lohwater, "The theory of cluster sets" , Cambridge Univ. Press (1966) pp. Chapt. 1;6</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A. Lohwater, "The boundary behaviour of analytic functions" ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''10''' (1973) pp. 99–259 (In Russian)</TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751088.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751089.png" /> be domains. A family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751090.png" /> of analytic mappings from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751091.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751092.png" /> is called normal if from any sequence of mappings in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751093.png" /> one can either extract a subsequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751094.png" /> that is uniformly convergent on compact subsets in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751095.png" /> to an analytic mapping from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751096.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751097.png" />, or a subsequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751098.png" /> with the property that for every compact sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751099.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n067510100.png" /> there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n067510101.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n067510102.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n067510103.png" />, see [[#References|[a1]]]. | + | Let $ D _ {1} \subseteq \mathbf C ^ {m} $, |
| + | $ D _ {2} \subseteq \mathbf C ^ {n} $ |
| + | be domains. A family $ F $ |
| + | of analytic mappings from $ D _ {1} $ |
| + | to $ D _ {2} $ |
| + | is called normal if from any sequence of mappings in $ F $ |
| + | one can either extract a subsequence $ \{ f _ \nu ( z) \} $ |
| + | that is uniformly convergent on compact subsets in $ D _ {1} $ |
| + | to an analytic mapping from $ D _ {1} $ |
| + | to $ D _ {2} $, |
| + | or a subsequence $ \{ f _ \nu ( z) \} $ |
| + | with the property that for every compact sets $ K _ {1} \subset D _ {1} $, |
| + | $ K _ {2} \subset D _ {2} $ |
| + | there is an $ N $ |
| + | such that $ f _ \nu ( K _ {1} ) \cap K _ {2} = \emptyset $ |
| + | for $ \nu > N $, |
| + | see [[#References|[a1]]]. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S.G. Krantz, "Function theory of several complex variables" , Wiley (1982)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> O. Lehto, K.I. Virtanen, "Boundary behaviour and normal meromorphic functions" ''Acta Math.'' , '''97''' (1957) pp. 47–65</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S.G. Krantz, "Function theory of several complex variables" , Wiley (1982)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> O. Lehto, K.I. Virtanen, "Boundary behaviour and normal meromorphic functions" ''Acta Math.'' , '''97''' (1957) pp. 47–65</TD></TR></table> |
of analytic functions in a domain
A family $ S $
of single-valued analytic functions $ f ( z) $
of complex variables $ z = ( z _ {1} \dots z _ {n} ) $
in a domain $ D $
in the space $ \mathbf C ^ {n} $,
$ n \geq 1 $,
such that from any sequence of functions in $ S $
one can extract a subsequence $ \{ f _ {v} ( z) \} $
that converges uniformly on compact subsets in $ D $
to an analytic function or to infinity. Uniform convergence to infinity on compact subsets means, by definition, that for any compact set $ K \subset D $
and any $ M > 0 $
one can find an $ N = N ( K, M) $
such that $ | f _ {v} ( z) | > M $
for all $ v > N $,
$ z \in K $.
A family $ S $
is called a normal family at a point $ z ^ {0} \in D $
if $ S $
is normal in some ball with centre at $ z ^ {0} $.
A family $ S $
is normal in $ D $
if and only if it is normal at every point $ z ^ {0} \in D $.
Every compact family of holomorphic functions is normal; the converse conclusion is false (see Compactness principle). If a family $ S $
of holomorphic functions in a domain $ D \subset \mathbf C ^ {n} $
has the property that all functions $ f ( z) \in S $
omit two fixed values, then $ S $
is normal in $ D $(
Montel's theorem). This criterion of normality considerably simplifies the investigation of analytic functions in a neighbourhood of an essential singular point (see also Picard theorem).
A normal family of meromorphic functions in a domain $ D \subset \mathbf C = \mathbf C ^ {1} $
is defined similarly: A family $ S $
of meromorphic functions in $ D $
is normal if from every sequence of functions in $ S $
one can extract a subsequence $ \{ f _ {v} ( z) \} $
that converges uniformly on compact subsets in $ D $
to a meromorphic function or to infinity. By definition, $ \{ f _ {v} ( z) \} $
converges uniformly on compact subsets in $ D $
to $ f ( z) $(
the case $ f ( z) \equiv \infty $
is excluded) if for any compact set $ K \subset D $
and any $ \epsilon > 0 $
there is an $ N = N ( \epsilon , K) $
and a disc $ B = B ( z ^ {0} , r) $
of radius $ r = r ( \epsilon , K) $
with centre at some point $ z ^ {0} \in K $
such that for $ v > N $,
$$
| f _ {v} ( z) - f ( z) | < \epsilon ,\ \
z \in B,
$$
when $ f ( z ^ {0} ) \neq \infty $,
or
$$
\left |
\frac{1}{f _ {v} ( z) }
- {
\frac{1}{f ( z) }
} \right |
< \epsilon ,\ \
z \in B,
$$
when $ f ( z ^ {0} ) = \infty $.
If a family $ S $
of meromorphic functions in a domain $ D \subset \mathbf C $
has the property that all functions $ f \in S $
omit three fixed values, then $ S $
is normal (Montel's theorem). A family $ S $
of meromorphic functions is normal in a domain $ D \subset \mathbf C $
if and only if
$$
\sup \{ {\rho ( f ( z)) } : {f \in S } \}
< \infty
$$
on every compact set $ K \subset D $,
where
$$
\rho ( f ( z)) = \
\frac{| f ^ { \prime } ( z) | }{1 + | f ( z) | ^ {2} }
$$
is the so-called spherical derivative of $ f ( z) $.
From the 1930s onwards great value was attached to the study of boundary properties of analytic functions (see also Cluster set, [3], [4]). A meromorphic function $ f ( z) $
in a simply-connected domain $ D \subset \mathbf C $
is said to be a normal function in the domain $ D $
if the family $ \{ f ( \gamma ( z)) \} $
is normal in $ D $,
where $ \gamma ( z) $
ranges over the family of all conformal automorphisms of $ D $.
A function $ f ( z) $
is called normal in a multiply-connected domain $ D $
if it is normal on the universal covering surface of $ D $.
If a meromorphic function $ f ( z) $
in $ D $
omits three values, then $ f ( z) $
is normal. For $ f ( z) $,
$ f ( z) \neq \textrm{ const } $,
to be normal in the unit disc $ G = \{ {z \in \mathbf C } : {| z | < 1 } \} $
it is necessary and sufficient that
$$
\frac{| f ^ { \prime } ( z) | }{1 + | f ( z) | ^ {2} }
< \
\frac{c}{1 - | z | ^ {2} }
,\ \
z \in G,\ \
c = c ( f ) = \textrm{ const } .
$$
For a normal meromorphic function $ f ( z) $
in the unit disc $ G $
the existence of an asymptotic value $ \alpha $
at a boundary point $ \zeta \in \Gamma = \{ {\zeta \in \mathbf C } : {| \zeta | = 1 } \} $
implies that $ \alpha $
is a non-tangential boundary value (cf. Angular boundary value) of $ f ( z) $
at $ \zeta $.
However, a meromorphic normal function in $ G $
need not have asymptotic values at all. On the other hand, if $ f ( z) $
is a holomorphic normal function in $ G $,
then non-tangential boundary values exist even on a set of points of the unit circle $ \Gamma $
that is dense in $ \Gamma $.
References
[1] | P. Montel, "Leçons sur les familles normales de fonctions analytiques et leurs applications" , Gauthier-Villars (1927) |
[2] | A.I. Markushevich, "Theory of functions of a complex variable" , 2 , Chelsea (1977) (Translated from Russian) |
[3] | E.F. Collingwood, A.J. Lohwater, "The theory of cluster sets" , Cambridge Univ. Press (1966) pp. Chapt. 1;6 |
[4] | A. Lohwater, "The boundary behaviour of analytic functions" Itogi Nauk. i Tekhn. Mat. Anal. , 10 (1973) pp. 99–259 (In Russian) |
Let $ D _ {1} \subseteq \mathbf C ^ {m} $,
$ D _ {2} \subseteq \mathbf C ^ {n} $
be domains. A family $ F $
of analytic mappings from $ D _ {1} $
to $ D _ {2} $
is called normal if from any sequence of mappings in $ F $
one can either extract a subsequence $ \{ f _ \nu ( z) \} $
that is uniformly convergent on compact subsets in $ D _ {1} $
to an analytic mapping from $ D _ {1} $
to $ D _ {2} $,
or a subsequence $ \{ f _ \nu ( z) \} $
with the property that for every compact sets $ K _ {1} \subset D _ {1} $,
$ K _ {2} \subset D _ {2} $
there is an $ N $
such that $ f _ \nu ( K _ {1} ) \cap K _ {2} = \emptyset $
for $ \nu > N $,
see [a1].
References
[a1] | S.G. Krantz, "Function theory of several complex variables" , Wiley (1982) |
[a2] | O. Lehto, K.I. Virtanen, "Boundary behaviour and normal meromorphic functions" Acta Math. , 97 (1957) pp. 47–65 |