Namespaces
Variants
Actions

Difference between revisions of "Noetherian operator"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A linear operator (with closed range) that is simultaneously <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n0668401.png" />-normal and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n0668402.png" />-normal (see [[Normally-solvable operator|Normally-solvable operator]]). In other words, a Noetherian operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n0668403.png" /> is a normally-solvable operator of finite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n0668404.png" />-characteristic (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n0668405.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n0668406.png" />). The index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n0668407.png" /> (cf. [[Index of an operator|Index of an operator]]) of a Noetherian operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n0668408.png" /> is also finite. The simplest example of a Noetherian operator is a linear operator acting from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n0668409.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684010.png" />. It is named after F. Noether [[#References|[1]]], in whose work the theory of Noetherian operators is developed parallel to the theory of singular integral equations. Linear operators generated by general boundary value problems for elliptic equations are frequently Noetherian.
+
<!--
 +
n0668401.png
 +
$#A+1 = 50 n = 0
 +
$#C+1 = 50 : ~/encyclopedia/old_files/data/N066/N.0606840 Noetherian operator
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A linear operator (with closed range) that is simultaneously  $  n $-
 +
normal and $  d $-
 +
normal (see [[Normally-solvable operator|Normally-solvable operator]]). In other words, a Noetherian operator $  A $
 +
is a normally-solvable operator of finite $  d $-
 +
characteristic ( $  n ( A) < + \infty $,  
 +
$  d ( A) < + \infty $).  
 +
The index $  \chi ( A) $(
 +
cf. [[Index of an operator|Index of an operator]]) of a Noetherian operator $  A $
 +
is also finite. The simplest example of a Noetherian operator is a linear operator acting from $  \mathbf R  ^ {k} $
 +
to $  \mathbf R  ^ {l} $.  
 +
It is named after F. Noether [[#References|[1]]], in whose work the theory of Noetherian operators is developed parallel to the theory of singular integral equations. Linear operators generated by general boundary value problems for elliptic equations are frequently Noetherian.
  
 
In practice, as a rule one succeeds to verify the validity of the following propositions (Noether's theorems):
 
In practice, as a rule one succeeds to verify the validity of the following propositions (Noether's theorems):
  
1) the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684011.png" /> has either no non-trivial solutions or a finite number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684012.png" /> of linearly independent solutions; and
+
1) the equation $  A x = 0 $
 +
has either no non-trivial solutions or a finite number n $
 +
of linearly independent solutions; and
  
2) the inhomogeneous equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684013.png" /> is either solvable for any right-hand side <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684014.png" />, or for its solvability it is necessary and sufficient that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684016.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684017.png" /> is a complete system of linearly independent solutions of the associated homogeneous equation, or it is formally adjoint to the homogeneous problem.
+
2) the inhomogeneous equation $  A x = y $
 +
is either solvable for any right-hand side $  y $,  
 +
or for its solvability it is necessary and sufficient that $  \langle  y , \psi _ {i} \rangle = 0 $,  
 +
$  i = 0 \dots m $,  
 +
where $  \{ \psi _ {i} \} _ {0}  ^ {m} $
 +
is a complete system of linearly independent solutions of the associated homogeneous equation, or it is formally adjoint to the homogeneous problem.
  
From 1) and 2) it follows that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684018.png" /> is a Noetherian operator.
+
From 1) and 2) it follows that $  A $
 +
is a Noetherian operator.
  
The property of being Noetherian is stable: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684019.png" /> is a Noetherian operator and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684020.png" /> is a linear operator of sufficiently small norm or is completely continuous, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684021.png" /> is also Noetherian, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684022.png" />.
+
The property of being Noetherian is stable: If $  A $
 +
is a Noetherian operator and $  B $
 +
is a linear operator of sufficiently small norm or is completely continuous, then $  A + B $
 +
is also Noetherian, and $  \chi ( A + B ) = \chi ( A) $.
  
Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684023.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684024.png" /> is the space of linear operators from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684025.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684026.png" />, is Noetherian. Then there is the direct decomposition
+
Suppose that $  A \in L ( X , Y ) $,
 +
where $  L ( X , Y ) $
 +
is the space of linear operators from $  X $
 +
to $  Y $,  
 +
is Noetherian. Then there is the direct decomposition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684027.png" /></td> </tr></table>
+
$$
 +
= N ( A) \dot{+} \widehat{X}  ,\  Y  = Z \dot{+} R ( A) ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684028.png" /> is the null space of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684030.png" /> is the range of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684032.png" />. The general solution of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684034.png" />, is of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684035.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684036.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684037.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684038.png" /> (the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684039.png" />) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684040.png" /> is arbitrary. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684041.png" /> is Noetherian with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684042.png" />-characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684043.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684044.png" /> is Noetherian with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684045.png" />-characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684046.png" />.
+
where $  N ( A) $
 +
is the null space of $  A $,  
 +
$  R( A) $
 +
is the range of $  A $
 +
and $  \mathop{\rm dim}  Z = d ( A) $.  
 +
The general solution of the equation $  Ax= y $,  
 +
$  y \in R ( A) $,  
 +
is of the form $  x = {\widehat{A}  } {}  ^ {-} 1 y + v $,  
 +
where $  \widehat{A}  \in \widehat{L}  ( \widehat{X}  , R ( A) ) $,  
 +
$  \widehat{A}  = A $
 +
on $  \widehat{X}  $(
 +
the restriction of $  A $)  
 +
and $  v \in N ( A) $
 +
is arbitrary. If $  A $
 +
is Noetherian with $  d $-
 +
characteristic $  ( n , m ) $,
 +
then $  A  ^ {*} $
 +
is Noetherian with $  d $-
 +
characteristic $  ( m , n ) $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  F. Noether,  "Ueber eine Klasse singulärer Integralgleichungen"  ''Math. Ann.'' , '''82'''  (1921)  pp. 42–63</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S.G. Krein,  "Linear differential equations in Banach space" , ''Transl. Math. Monogr.'' , '''29''' , Amer. Math. Soc.  (1971)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M.M. Vainberg,  V.A. Trenogin,  "Theory of branching of solutions of non-linear equations" , Noordhoff  (1974)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  F. Noether,  "Ueber eine Klasse singulärer Integralgleichungen"  ''Math. Ann.'' , '''82'''  (1921)  pp. 42–63</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S.G. Krein,  "Linear differential equations in Banach space" , ''Transl. Math. Monogr.'' , '''29''' , Amer. Math. Soc.  (1971)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M.M. Vainberg,  V.A. Trenogin,  "Theory of branching of solutions of non-linear equations" , Noordhoff  (1974)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
In the Western literature a Noetherian operator is usually called a Fredholm operator. The index of such an operator is the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684047.png" />. The product of two Noetherian operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684048.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684049.png" /> is again a Noetherian operator, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066840/n06684050.png" />. In the first concrete applications (see Noether's paper [[#References|[1]]]) the index was calculated as a winding number associated with a certain continuous function. The computation of the index for different classes of operators is an important problem in modern mathematics (see e.g. [[#References|[a1]]]).
+
In the Western literature a Noetherian operator is usually called a Fredholm operator. The index of such an operator is the number $  \chi ( A) = n ( A) - d ( A) $.  
 +
The product of two Noetherian operators $  A $
 +
and $  B $
 +
is again a Noetherian operator, and $  \chi ( A B ) = \chi ( A) + \chi ( B) $.  
 +
In the first concrete applications (see Noether's paper [[#References|[1]]]) the index was calculated as a winding number associated with a certain continuous function. The computation of the index for different classes of operators is an important problem in modern mathematics (see e.g. [[#References|[a1]]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.S. Palais,  "Seminar on the Atiyah–Singer index theorem" , Princeton Univ. Press  (1965)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  I.C. [I.Ts. Gokhberg] Gohberg,  M.G. Krein,  "The basic propositions on defect numbers, root numbers and indices of linear operators"  ''Transl. Amer. Math. Soc. (2)'' , '''13'''  (1960)  pp. 185–264  ''Uspekhi Mat. Nauk'' , '''12'''  (1957)  pp. 43–118</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  I. [I.Ts. Gokhberg] Gohberg,  N. Krupnik,  "Einführung in die Theorie der eindimensionalen singulären Integraloperatoren" , Birkhäuser  (1979)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  S. Goldberg,  "Unbounded linear operators" , McGraw-Hill  (1966)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  T. Kato,  "Perturbation theory for nullity, deficiency and other quantities of linear operators"  ''J. d'Anal. Math.'' , '''6'''  (1958)  pp. 261–322</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  S.G. Krein,  "Linear equations in Banach spaces" , Birkhäuser  (1982)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.S. Palais,  "Seminar on the Atiyah–Singer index theorem" , Princeton Univ. Press  (1965)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  I.C. [I.Ts. Gokhberg] Gohberg,  M.G. Krein,  "The basic propositions on defect numbers, root numbers and indices of linear operators"  ''Transl. Amer. Math. Soc. (2)'' , '''13'''  (1960)  pp. 185–264  ''Uspekhi Mat. Nauk'' , '''12'''  (1957)  pp. 43–118</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  I. [I.Ts. Gokhberg] Gohberg,  N. Krupnik,  "Einführung in die Theorie der eindimensionalen singulären Integraloperatoren" , Birkhäuser  (1979)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  S. Goldberg,  "Unbounded linear operators" , McGraw-Hill  (1966)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  T. Kato,  "Perturbation theory for nullity, deficiency and other quantities of linear operators"  ''J. d'Anal. Math.'' , '''6'''  (1958)  pp. 261–322</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  S.G. Krein,  "Linear equations in Banach spaces" , Birkhäuser  (1982)  (Translated from Russian)</TD></TR></table>

Latest revision as of 08:02, 6 June 2020


A linear operator (with closed range) that is simultaneously $ n $- normal and $ d $- normal (see Normally-solvable operator). In other words, a Noetherian operator $ A $ is a normally-solvable operator of finite $ d $- characteristic ( $ n ( A) < + \infty $, $ d ( A) < + \infty $). The index $ \chi ( A) $( cf. Index of an operator) of a Noetherian operator $ A $ is also finite. The simplest example of a Noetherian operator is a linear operator acting from $ \mathbf R ^ {k} $ to $ \mathbf R ^ {l} $. It is named after F. Noether [1], in whose work the theory of Noetherian operators is developed parallel to the theory of singular integral equations. Linear operators generated by general boundary value problems for elliptic equations are frequently Noetherian.

In practice, as a rule one succeeds to verify the validity of the following propositions (Noether's theorems):

1) the equation $ A x = 0 $ has either no non-trivial solutions or a finite number $ n $ of linearly independent solutions; and

2) the inhomogeneous equation $ A x = y $ is either solvable for any right-hand side $ y $, or for its solvability it is necessary and sufficient that $ \langle y , \psi _ {i} \rangle = 0 $, $ i = 0 \dots m $, where $ \{ \psi _ {i} \} _ {0} ^ {m} $ is a complete system of linearly independent solutions of the associated homogeneous equation, or it is formally adjoint to the homogeneous problem.

From 1) and 2) it follows that $ A $ is a Noetherian operator.

The property of being Noetherian is stable: If $ A $ is a Noetherian operator and $ B $ is a linear operator of sufficiently small norm or is completely continuous, then $ A + B $ is also Noetherian, and $ \chi ( A + B ) = \chi ( A) $.

Suppose that $ A \in L ( X , Y ) $, where $ L ( X , Y ) $ is the space of linear operators from $ X $ to $ Y $, is Noetherian. Then there is the direct decomposition

$$ X = N ( A) \dot{+} \widehat{X} ,\ Y = Z \dot{+} R ( A) , $$

where $ N ( A) $ is the null space of $ A $, $ R( A) $ is the range of $ A $ and $ \mathop{\rm dim} Z = d ( A) $. The general solution of the equation $ Ax= y $, $ y \in R ( A) $, is of the form $ x = {\widehat{A} } {} ^ {-} 1 y + v $, where $ \widehat{A} \in \widehat{L} ( \widehat{X} , R ( A) ) $, $ \widehat{A} = A $ on $ \widehat{X} $( the restriction of $ A $) and $ v \in N ( A) $ is arbitrary. If $ A $ is Noetherian with $ d $- characteristic $ ( n , m ) $, then $ A ^ {*} $ is Noetherian with $ d $- characteristic $ ( m , n ) $.

References

[1] F. Noether, "Ueber eine Klasse singulärer Integralgleichungen" Math. Ann. , 82 (1921) pp. 42–63
[2] S.G. Krein, "Linear differential equations in Banach space" , Transl. Math. Monogr. , 29 , Amer. Math. Soc. (1971) (Translated from Russian)
[3] M.M. Vainberg, V.A. Trenogin, "Theory of branching of solutions of non-linear equations" , Noordhoff (1974) (Translated from Russian)

Comments

In the Western literature a Noetherian operator is usually called a Fredholm operator. The index of such an operator is the number $ \chi ( A) = n ( A) - d ( A) $. The product of two Noetherian operators $ A $ and $ B $ is again a Noetherian operator, and $ \chi ( A B ) = \chi ( A) + \chi ( B) $. In the first concrete applications (see Noether's paper [1]) the index was calculated as a winding number associated with a certain continuous function. The computation of the index for different classes of operators is an important problem in modern mathematics (see e.g. [a1]).

References

[a1] R.S. Palais, "Seminar on the Atiyah–Singer index theorem" , Princeton Univ. Press (1965)
[a2] I.C. [I.Ts. Gokhberg] Gohberg, M.G. Krein, "The basic propositions on defect numbers, root numbers and indices of linear operators" Transl. Amer. Math. Soc. (2) , 13 (1960) pp. 185–264 Uspekhi Mat. Nauk , 12 (1957) pp. 43–118
[a3] I. [I.Ts. Gokhberg] Gohberg, N. Krupnik, "Einführung in die Theorie der eindimensionalen singulären Integraloperatoren" , Birkhäuser (1979) (Translated from Russian)
[a4] S. Goldberg, "Unbounded linear operators" , McGraw-Hill (1966)
[a5] T. Kato, "Perturbation theory for nullity, deficiency and other quantities of linear operators" J. d'Anal. Math. , 6 (1958) pp. 261–322
[a6] S.G. Krein, "Linear equations in Banach spaces" , Birkhäuser (1982) (Translated from Russian)
How to Cite This Entry:
Noetherian operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Noetherian_operator&oldid=14851
This article was adapted from an original article by V.A. Trenogin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article