Difference between revisions of "Nil ideal"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | n0666701.png | ||
+ | $#A+1 = 11 n = 0 | ||
+ | $#C+1 = 11 : ~/encyclopedia/old_files/data/N066/N.0606670 Nil ideal | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A subset $ A $ | |
+ | of a ring $ R $ | ||
+ | is called nil if each element of it is nilpotent (cf. [[Nilpotent element|Nilpotent element]]). An ideal of $ R $ | ||
+ | is a nil ideal if it is a nil subset. There is a largest nil ideal, which is called the nil radical. One has that | ||
+ | |||
+ | $$ | ||
+ | \mathop{\rm Jac} ( R) \supset \textrm{ Nil Rad } ( R) \supset \textrm{ Prime Rad } ( R), | ||
+ | $$ | ||
+ | |||
+ | where $ \mathop{\rm Jac} ( R) $ | ||
+ | denotes the [[Jacobson radical|Jacobson radical]] of $ R $ | ||
+ | and $ \textrm{ Prime Rad } ( R) $ | ||
+ | is the prime radical of $ R $, | ||
+ | i.e. the intersection of all prime ideals of $ R $. | ||
+ | Each of the inclusions can be proper. If $ R $ | ||
+ | is commutative, $ \textrm{ Nil Rad } ( R) = \textrm{ Prime Rad } ( R) $. | ||
+ | The prime radical is also called the lower nil radical, and the nil radical the upper nil radical. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Faith, "Algebra" , '''II. Ring theory''' , Springer (1976)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.C. McConnell, J.C. Robson, "Noncommutative Noetherian rings" , Wiley (1987)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> L.H. Rowen, "Ring theory" , '''1''' , Acad. Press (1988)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Faith, "Algebra" , '''II. Ring theory''' , Springer (1976)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.C. McConnell, J.C. Robson, "Noncommutative Noetherian rings" , Wiley (1987)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> L.H. Rowen, "Ring theory" , '''1''' , Acad. Press (1988)</TD></TR></table> |
Latest revision as of 08:02, 6 June 2020
A subset $ A $
of a ring $ R $
is called nil if each element of it is nilpotent (cf. Nilpotent element). An ideal of $ R $
is a nil ideal if it is a nil subset. There is a largest nil ideal, which is called the nil radical. One has that
$$ \mathop{\rm Jac} ( R) \supset \textrm{ Nil Rad } ( R) \supset \textrm{ Prime Rad } ( R), $$
where $ \mathop{\rm Jac} ( R) $ denotes the Jacobson radical of $ R $ and $ \textrm{ Prime Rad } ( R) $ is the prime radical of $ R $, i.e. the intersection of all prime ideals of $ R $. Each of the inclusions can be proper. If $ R $ is commutative, $ \textrm{ Nil Rad } ( R) = \textrm{ Prime Rad } ( R) $. The prime radical is also called the lower nil radical, and the nil radical the upper nil radical.
References
[a1] | C. Faith, "Algebra" , II. Ring theory , Springer (1976) |
[a2] | J.C. McConnell, J.C. Robson, "Noncommutative Noetherian rings" , Wiley (1987) |
[a3] | L.H. Rowen, "Ring theory" , 1 , Acad. Press (1988) |
Nil ideal. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Nil_ideal&oldid=12426