Namespaces
Variants
Actions

Difference between revisions of "Natural sequence"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
<!--
 +
n0661101.png
 +
$#A+1 = 30 n = 0
 +
$#C+1 = 30 : ~/encyclopedia/old_files/data/N066/N.0606110 Natural sequence,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''natural number sequence''
 
''natural number sequence''
  
The non-empty set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n0661101.png" /> in which a unary operation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n0661102.png" /> is defined (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n0661103.png" /> is a single-valued mapping of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n0661104.png" /> into itself) satisfying the following conditions (the [[Peano axioms|Peano axioms]]):
+
The non-empty set $  \mathbf N = \{ 1 , 2 , . . . \} $
 +
in which a [[unary operation]]  $  S $
 +
is defined (i.e. $  S $
 +
is a single-valued mapping of $  \mathbf N $
 +
into itself) satisfying the following conditions (the [[Peano axioms|Peano axioms]]):
  
1) for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n0661105.png" />,
+
1) for any $  a \in \mathbf N $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n0661106.png" /></td> </tr></table>
+
$$
 +
1  \neq  Sa;
 +
$$
  
2) for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n0661107.png" />: If
+
2) for any $  a, b \in \mathbf N $:  
 +
If
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n0661108.png" /></td> </tr></table>
+
$$
 +
Sa  = Sb,
 +
$$
  
 
then
 
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n0661109.png" /></td> </tr></table>
+
$$
 +
= b;
 +
$$
  
3) any subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n06611010.png" /> that contains 1 and that together with any element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n06611011.png" /> also contains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n06611012.png" />, is necessarily the whole of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n06611013.png" /> (axiom of induction).
+
3) any subset of $  \mathbf N $
 +
that contains 1 and that together with any element $  a $
 +
also contains $  Sa $,  
 +
is necessarily the whole of $  \mathbf N $(
 +
axiom of induction).
  
The element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n06611014.png" /> is usually called the immediate successor of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n06611015.png" />. The natural sequence is a [[Totally ordered set|totally ordered set]]. It can be proved that the conditions
+
The element $  Sa $
 +
is usually called the immediate successor of $  a $.  
 +
The natural sequence is a [[Totally ordered set|totally ordered set]]. It can be proved that the conditions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n06611016.png" /></td> </tr></table>
+
$$
 +
a + 1  = Sa,\ \
 +
a + Sb  = S ( a + b),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n06611017.png" /></td> </tr></table>
+
$$
 +
a \cdot 1  = a,\  a \cdot Sb  = ab + a,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n06611018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n06611019.png" /> are arbitrary elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n06611020.png" />, define binary operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n06611021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n06611022.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n06611023.png" />. The system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n06611024.png" /> is the system of natural numbers (cf. [[Natural number|Natural number]]).
+
where $  a $
 +
and $  b $
 +
are arbitrary elements of $  \mathbf N $,  
 +
define binary operations $  (+) $
 +
and $  ( \cdot ) $
 +
on $  \mathbf N $.  
 +
The system $  \langle  \mathbf N, +, \cdot , 1 \rangle $
 +
is the system of natural numbers (cf. [[Natural number|Natural number]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  B.L. van der Waerden,  "Algebra" , '''1''' , Springer  (1967)  (Translated from German)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  B.L. van der Waerden,  "Algebra" , '''1''' , Springer  (1967)  (Translated from German)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
Often, the natural number sequence is started at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n06611025.png" />, cf. also [[Natural number|Natural number]].
+
Often, the natural number sequence is started at 0 $,  
 +
cf. also [[Natural number|Natural number]].
  
The system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n06611026.png" /> is the only (up to an isomorphism) system satisfying the Peano axioms.
+
The system $  ( \mathbf N , S ) $
 +
is the only (up to an isomorphism) system satisfying the Peano axioms.
  
When saying that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n06611027.png" /> is a totally ordered set, one refers to the total order relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n06611028.png" /> defined by:
+
When saying that $  ( \mathbf N , S ) $
 +
is a totally ordered set, one refers to the total order relation < $
 +
defined by:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n06611029.png" /></td> </tr></table>
+
$$
 +
\neg ( a  < 1 ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066110/n06611030.png" /></td> </tr></table>
+
$$
 +
a < S b  \iff  a < b  \textrm{ or }  a = b .
 +
$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H.C. Kennedy,  "Selected works of Giuseppe Peano" , Allen &amp; Unwin  (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  E. Landau,  "Grundlagen der Analysis" , Akad. Verlagsgesellschaft  (1930)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  S. MacLane,  "Algebra" , Macmillan  (1967)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H.C. Kennedy,  "Selected works of Giuseppe Peano" , Allen &amp; Unwin  (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  E. Landau,  "Grundlagen der Analysis" , Akad. Verlagsgesellschaft  (1930)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  S. MacLane,  "Algebra" , Macmillan  (1967)</TD></TR></table>

Latest revision as of 08:02, 6 June 2020


natural number sequence

The non-empty set $ \mathbf N = \{ 1 , 2 , . . . \} $ in which a unary operation $ S $ is defined (i.e. $ S $ is a single-valued mapping of $ \mathbf N $ into itself) satisfying the following conditions (the Peano axioms):

1) for any $ a \in \mathbf N $,

$$ 1 \neq Sa; $$

2) for any $ a, b \in \mathbf N $: If

$$ Sa = Sb, $$

then

$$ a = b; $$

3) any subset of $ \mathbf N $ that contains 1 and that together with any element $ a $ also contains $ Sa $, is necessarily the whole of $ \mathbf N $( axiom of induction).

The element $ Sa $ is usually called the immediate successor of $ a $. The natural sequence is a totally ordered set. It can be proved that the conditions

$$ a + 1 = Sa,\ \ a + Sb = S ( a + b), $$

$$ a \cdot 1 = a,\ a \cdot Sb = ab + a, $$

where $ a $ and $ b $ are arbitrary elements of $ \mathbf N $, define binary operations $ (+) $ and $ ( \cdot ) $ on $ \mathbf N $. The system $ \langle \mathbf N, +, \cdot , 1 \rangle $ is the system of natural numbers (cf. Natural number).

References

[1] B.L. van der Waerden, "Algebra" , 1 , Springer (1967) (Translated from German)

Comments

Often, the natural number sequence is started at $ 0 $, cf. also Natural number.

The system $ ( \mathbf N , S ) $ is the only (up to an isomorphism) system satisfying the Peano axioms.

When saying that $ ( \mathbf N , S ) $ is a totally ordered set, one refers to the total order relation $ < $ defined by:

$$ \neg ( a < 1 ) , $$

$$ a < S b \iff a < b \textrm{ or } a = b . $$

References

[a1] H.C. Kennedy, "Selected works of Giuseppe Peano" , Allen & Unwin (1973)
[a2] E. Landau, "Grundlagen der Analysis" , Akad. Verlagsgesellschaft (1930)
[a3] S. MacLane, "Algebra" , Macmillan (1967)
How to Cite This Entry:
Natural sequence. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Natural_sequence&oldid=16451
This article was adapted from an original article by A.A. BukhshtabV.I. Nechaev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article