Difference between revisions of "Multiplicative ergodic theorem"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | m0654401.png | ||
+ | $#A+1 = 80 n = 0 | ||
+ | $#C+1 = 80 : ~/encyclopedia/old_files/data/M065/M.0605440 Multiplicative ergodic theorem, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''Oseledets's multiplicative ergodic theorem, Oseledec's multiplicative ergodic theorem'' | ''Oseledets's multiplicative ergodic theorem, Oseledec's multiplicative ergodic theorem'' | ||
Consider a linear homogeneous system of differential equations | Consider a linear homogeneous system of differential equations | ||
− | + | $$ \tag{a1 } | |
+ | \dot{x} = A ( t) x ,\ \ | ||
+ | x ( 0 ; x _ {0} ) = x _ {0} \in \mathbf R ^ {n} ,\ \ | ||
+ | t \geq 0 . | ||
+ | $$ | ||
− | The Lyapunov exponent of a solution | + | The Lyapunov exponent of a solution $ x ( t ; x _ {0} ) $ |
+ | of (a1) is defined as | ||
− | + | $$ | |
+ | \lambda ( x _ {0} ) = {\lim\limits \sup } _ {t \rightarrow | ||
+ | \infty } \ | ||
+ | t ^ {-} 1 \mathop{\rm log} \| x ( t ; x _ {0} ) \| . | ||
+ | $$ | ||
− | A more general setting (Lyapunov exponents for families of system of differential equations) for discussing Lyapunov exponents and related matters is as follows. Let | + | A more general setting (Lyapunov exponents for families of system of differential equations) for discussing Lyapunov exponents and related matters is as follows. Let $ \Phi = ( \Phi _ {t} ) _ {t \in \mathbf R } $ |
+ | be a [[Measurable flow|measurable flow]] on a measure space $ ( E , \mu ) $. | ||
+ | For all $ e \in E $, | ||
+ | let $ V _ {e} $ | ||
+ | be an $ n $- | ||
+ | dimensional vector space. (Think, for example, of a vector bundle $ T \rightarrow E $.) | ||
+ | A cocycle $ C ( t , e ) $ | ||
+ | associated with the flow $ \Phi $ | ||
+ | is a measurable function on $ \mathbf R \times E $ | ||
+ | that assigns to $ ( t , e ) $ | ||
+ | an invertible linear mapping $ V _ {e} \rightarrow V _ {\Phi _ {t} ( e) } $ | ||
+ | such that | ||
− | + | $$ \tag{a2 } | |
+ | C ( t + s , e ) = C ( t , \Phi _ {s} ( e) ) C ( s , e ) . | ||
+ | $$ | ||
− | I.e. if the collection of vector spaces | + | I.e. if the collection of vector spaces $ V _ {e} $ |
+ | is viewed as an $ n $- | ||
+ | dimensional vector bundle over $ E $, | ||
+ | then $ C ( t , \cdot ) $ | ||
+ | defines an isomorphism of vector bundles $ \widetilde \Phi _ {t} $ | ||
+ | over $ \Phi _ {t} $, | ||
− | + | $$ | |
− | and condition (a2) simply says that | + | and condition (a2) simply says that $ \widetilde \Phi _ {t+} s = \widetilde \Phi _ {t} \circ \widetilde \Phi _ {s} $. |
+ | So $ \widetilde \Phi $ | ||
+ | is a flow on $ V $ | ||
+ | that lifts $ \Phi $. | ||
+ | $ \widetilde \Phi $ | ||
+ | is sometimes called the skew product flow defined by $ \Phi $ | ||
+ | and $ C $. | ||
+ | This set-up is sufficiently general to discuss Lyapunov exponents for non-linear flows, and even stochastic non-linear flows and such things as products of random matrices. If $ E = \{ e \} $, | ||
+ | $ \Phi _ {t} = \mathop{\rm id} $, | ||
+ | the classical situation (a1) reappears. Let $ \dot{x} = f ( x) $ | ||
+ | be a differential equation on a manifold $ M $. | ||
+ | Take $ V = T M $, | ||
+ | the tangent bundle over $ M $. | ||
+ | Let $ \Phi _ {t} $ | ||
+ | be the flow on $ M $ | ||
+ | defined by $ \dot{x} = f ( x) $. | ||
+ | The associated cocycle is defined by the differential $ d \Phi _ {t} $ | ||
+ | of $ \Phi _ {t} $, | ||
− | + | $$ | |
+ | C ( t , m ) = d \Phi _ {t} ( m) : \ | ||
+ | T _ {m} M \rightarrow T _ {\Phi _ {t} ( m) } M . | ||
+ | $$ | ||
− | For a skew product flow | + | For a skew product flow $ \widetilde \Phi $ |
+ | on $ V $ | ||
+ | the Lyapunov exponent at $ e \in E $ | ||
+ | in the direction $ v \in V _ {e} $ | ||
+ | is defined by | ||
− | + | $$ | |
+ | \lambda ( e , v ) = {\lim\limits \sup } _ {t \rightarrow \infty | ||
+ | } t ^ {-} 1 \mathop{\rm log} \| C ( t , e ) v \| . | ||
+ | $$ | ||
− | The multiplicative ergodic theorem of V.I. Oseledets [[#References|[a1]]] now is as follows. Let | + | The multiplicative ergodic theorem of V.I. Oseledets [[#References|[a1]]] now is as follows. Let $ \widetilde \Phi $ |
+ | be a skew product flow and assume that there is an invariant probability measure $ \rho $ | ||
+ | on $ ( E , \mu ) $ | ||
+ | for $ \Phi $, | ||
+ | i.e. $ \Phi _ {t} \rho = \rho $ | ||
+ | for all $ t \in \mathbf R $. | ||
+ | Suppose, moreover, that | ||
− | + | $$ | |
+ | \int\limits _ { E } \sup _ {- 1 \leq t \leq 1 } \mathop{\rm log} | ||
+ | ^ {+} \| C ^ {\pm 1 } ( t , e ) \| d \rho < \infty . | ||
+ | $$ | ||
− | Then there exists a measurable | + | Then there exists a measurable $ \Phi $- |
+ | invariant set $ E _ {0} \subset E $ | ||
+ | of $ \rho $- | ||
+ | measure 1 such that for all $ x \in E _ {0} $ | ||
+ | there are $ l ( e) $ | ||
+ | numbers $ \lambda _ {e} ^ {l} < \dots < \lambda _ {1} ^ {l} $, | ||
+ | $ l ( e) \leq d $, | ||
+ | and corresponding subspaces $ 0 \subset W _ {e} ^ {l} \subset \dots \subset W _ {e} ^ {1} = V _ {e} $ | ||
+ | of dimensions $ d _ {e} ^ {l} < \dots < d _ {e} ^ {1} = d $ | ||
+ | such that for all $ i = 1 \dots l ( e) $, | ||
− | + | $$ | |
+ | \lim\limits _ {t \rightarrow \infty } t ^ {-} 1 \mathop{\rm log} \ | ||
+ | \| C ( t , e ) v \| = \lambda _ {e} ^ {i} | ||
+ | \ \iff \ v \in W _ {e} ^ {i} \setminus W _ {e} ^ {i+} 1 . | ||
+ | $$ | ||
− | If moreover | + | If moreover $ \rho $ |
+ | is ergodic for $ \Phi _ {t} $, | ||
+ | i.e. all $ \Phi _ {t} $- | ||
+ | invariant subsets have $ \rho $- | ||
+ | measure $ 0 $ | ||
+ | or $ 1 $, | ||
+ | then the $ l ( e) $, | ||
+ | $ \lambda _ {e} ^ {i} $, | ||
+ | $ d _ {e} ^ {i} $ | ||
+ | are constants independent of $ e $( | ||
+ | or $ E _ {0} $). | ||
+ | However, the spaces $ W _ {e} ^ {i} $ | ||
+ | may still depend on $ e \in E _ {0} $( | ||
+ | if the bundle $ V $ | ||
+ | is a trivial bundle so that all the $ V _ {e} $ | ||
+ | can be identified). The set $ \{ \lambda _ {1} \dots \lambda _ {l} \} $ | ||
+ | is called the Lyapunov spectrum of the flow. For more details and applications cf. [[#References|[a2]]], [[#References|[a3]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> V.I. [V.I. Oseledets] Oseledec, "A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems" ''Trans. Moscow Math. Soc.'' , '''19''' (1968) pp. 197–231 ''Trudy Moskov. Mat. Obshch.'' , '''19''' (1968) pp. 179–210</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Kliemann, "Analysis of nonlinear stochastic systems" W. Schiehlen (ed.) W. Wedig (ed.) , ''Analysis and estimation of stochastic mechanical systems'' , Springer (Wien) (1988) pp. 43–102</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> L. Arnold (ed.) V. Wihstutz (ed.) , ''Lyapunov exponents'' , ''Lect. notes in math.'' , '''1186''' , Springer (1986)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> V.I. [V.I. Oseledets] Oseledec, "A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems" ''Trans. Moscow Math. Soc.'' , '''19''' (1968) pp. 197–231 ''Trudy Moskov. Mat. Obshch.'' , '''19''' (1968) pp. 179–210</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Kliemann, "Analysis of nonlinear stochastic systems" W. Schiehlen (ed.) W. Wedig (ed.) , ''Analysis and estimation of stochastic mechanical systems'' , Springer (Wien) (1988) pp. 43–102</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> L. Arnold (ed.) V. Wihstutz (ed.) , ''Lyapunov exponents'' , ''Lect. notes in math.'' , '''1186''' , Springer (1986)</TD></TR></table> |
Revision as of 08:02, 6 June 2020
Oseledets's multiplicative ergodic theorem, Oseledec's multiplicative ergodic theorem
Consider a linear homogeneous system of differential equations
$$ \tag{a1 } \dot{x} = A ( t) x ,\ \ x ( 0 ; x _ {0} ) = x _ {0} \in \mathbf R ^ {n} ,\ \ t \geq 0 . $$
The Lyapunov exponent of a solution $ x ( t ; x _ {0} ) $ of (a1) is defined as
$$ \lambda ( x _ {0} ) = {\lim\limits \sup } _ {t \rightarrow \infty } \ t ^ {-} 1 \mathop{\rm log} \| x ( t ; x _ {0} ) \| . $$
A more general setting (Lyapunov exponents for families of system of differential equations) for discussing Lyapunov exponents and related matters is as follows. Let $ \Phi = ( \Phi _ {t} ) _ {t \in \mathbf R } $ be a measurable flow on a measure space $ ( E , \mu ) $. For all $ e \in E $, let $ V _ {e} $ be an $ n $- dimensional vector space. (Think, for example, of a vector bundle $ T \rightarrow E $.) A cocycle $ C ( t , e ) $ associated with the flow $ \Phi $ is a measurable function on $ \mathbf R \times E $ that assigns to $ ( t , e ) $ an invertible linear mapping $ V _ {e} \rightarrow V _ {\Phi _ {t} ( e) } $ such that
$$ \tag{a2 } C ( t + s , e ) = C ( t , \Phi _ {s} ( e) ) C ( s , e ) . $$
I.e. if the collection of vector spaces $ V _ {e} $ is viewed as an $ n $- dimensional vector bundle over $ E $, then $ C ( t , \cdot ) $ defines an isomorphism of vector bundles $ \widetilde \Phi _ {t} $ over $ \Phi _ {t} $,
$$ and condition (a2) simply says that $ \widetilde \Phi _ {t+} s = \widetilde \Phi _ {t} \circ \widetilde \Phi _ {s} $. So $ \widetilde \Phi $ is a flow on $ V $ that lifts $ \Phi $. $ \widetilde \Phi $ is sometimes called the skew product flow defined by $ \Phi $ and $ C $. This set-up is sufficiently general to discuss Lyapunov exponents for non-linear flows, and even stochastic non-linear flows and such things as products of random matrices. If $ E = \{ e \} $, $ \Phi _ {t} = \mathop{\rm id} $, the classical situation (a1) reappears. Let $ \dot{x} = f ( x) $ be a differential equation on a manifold $ M $. Take $ V = T M $, the tangent bundle over $ M $. Let $ \Phi _ {t} $ be the flow on $ M $ defined by $ \dot{x} = f ( x) $. The associated cocycle is defined by the differential $ d \Phi _ {t} $ of $ \Phi _ {t} $, $$ C ( t , m ) = d \Phi _ {t} ( m) : \ T _ {m} M \rightarrow T _ {\Phi _ {t} ( m) } M . $$ For a skew product flow $ \widetilde \Phi $ on $ V $ the Lyapunov exponent at $ e \in E $ in the direction $ v \in V _ {e} $ is defined by $$ \lambda ( e , v ) = {\lim\limits \sup } _ {t \rightarrow \infty
} t ^ {-} 1 \mathop{\rm log} \| C ( t , e ) v \| .
$$ The multiplicative ergodic theorem of V.I. Oseledets [[#References|[a1]]] now is as follows. Let $ \widetilde \Phi $ be a skew product flow and assume that there is an invariant probability measure $ \rho $ on $ ( E , \mu ) $ for $ \Phi $, i.e. $ \Phi _ {t} \rho = \rho $ for all $ t \in \mathbf R $. Suppose, moreover, that $$ \int\limits _ { E } \sup _ {- 1 \leq t \leq 1 } \mathop{\rm log}
^ {+} \| C ^ {\pm 1 } ( t , e ) \| d \rho < \infty .
$$ Then there exists a measurable $ \Phi $- invariant set $ E _ {0} \subset E $ of $ \rho $- measure 1 such that for all $ x \in E _ {0} $ there are $ l ( e) $ numbers $ \lambda _ {e} ^ {l} < \dots < \lambda _ {1} ^ {l} $, $ l ( e) \leq d $, and corresponding subspaces $ 0 \subset W _ {e} ^ {l} \subset \dots \subset W _ {e} ^ {1} = V _ {e} $ of dimensions $ d _ {e} ^ {l} < \dots < d _ {e} ^ {1} = d $ such that for all $ i = 1 \dots l ( e) $, $$ \lim\limits _ {t \rightarrow \infty } t ^ {-} 1 \mathop{\rm log} \ \| C ( t , e ) v \| = \lambda _ {e} ^ {i} \ \iff \ v \in W _ {e} ^ {i} \setminus W _ {e} ^ {i+} 1 . $$
If moreover $ \rho $ is ergodic for $ \Phi _ {t} $, i.e. all $ \Phi _ {t} $- invariant subsets have $ \rho $- measure $ 0 $ or $ 1 $, then the $ l ( e) $, $ \lambda _ {e} ^ {i} $, $ d _ {e} ^ {i} $ are constants independent of $ e $( or $ E _ {0} $). However, the spaces $ W _ {e} ^ {i} $ may still depend on $ e \in E _ {0} $( if the bundle $ V $ is a trivial bundle so that all the $ V _ {e} $ can be identified). The set $ \{ \lambda _ {1} \dots \lambda _ {l} \} $ is called the Lyapunov spectrum of the flow. For more details and applications cf. [a2], [a3].
References
[a1] | V.I. [V.I. Oseledets] Oseledec, "A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems" Trans. Moscow Math. Soc. , 19 (1968) pp. 197–231 Trudy Moskov. Mat. Obshch. , 19 (1968) pp. 179–210 |
[a2] | W. Kliemann, "Analysis of nonlinear stochastic systems" W. Schiehlen (ed.) W. Wedig (ed.) , Analysis and estimation of stochastic mechanical systems , Springer (Wien) (1988) pp. 43–102 |
[a3] | L. Arnold (ed.) V. Wihstutz (ed.) , Lyapunov exponents , Lect. notes in math. , 1186 , Springer (1986) |
Multiplicative ergodic theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Multiplicative_ergodic_theorem&oldid=13218