Difference between revisions of "Multi-functor"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | m0651801.png | ||
+ | $#A+1 = 75 n = 0 | ||
+ | $#C+1 = 75 : ~/encyclopedia/old_files/data/M065/M.0605180 Multi\AAhfunctor, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''multi-place functor'' | ''multi-place functor'' | ||
− | A function of several arguments, defined on categories, taking values in a [[Category|category]] and giving a one-place [[Functor|functor]] in each argument. More precisely, let | + | A function of several arguments, defined on categories, taking values in a [[Category|category]] and giving a one-place [[Functor|functor]] in each argument. More precisely, let $ n $ |
+ | categories $ \mathfrak K _ {1} \dots \mathfrak K _ {n} $ | ||
+ | be given. Construct the Cartesian product category $ \mathfrak K = \overline{\mathfrak K}\; _ {1} \times \dots \times \overline{\mathfrak K}\; _ {n} $, | ||
+ | where each category $ \overline{\mathfrak K}\; _ {i} $ | ||
+ | is either $ \mathfrak K _ {i} $ | ||
+ | or the opposite category $ \mathfrak K _ {i} ^ {*} $. | ||
+ | A one-place covariant functor $ F $ | ||
+ | from $ \mathfrak K $ | ||
+ | with values in a category $ \mathfrak C $ | ||
+ | is called an $ n $- | ||
+ | place functor on $ \mathfrak K _ {1} \dots \mathfrak K _ {n} $ | ||
+ | with values in $ \mathfrak C $. | ||
+ | The functor $ F $ | ||
+ | is covariant in those arguments which correspond to the factors $ \mathfrak K _ {i} $ | ||
+ | in $ \mathfrak K $, | ||
+ | and contravariant in the remaining arguments. | ||
− | The conditions which must be satisfied by a mapping | + | The conditions which must be satisfied by a mapping $ F : \mathfrak K \rightarrow \mathfrak C $ |
+ | are given below (in the case $ n = 2 $, | ||
+ | with the first argument contravariant and the second covariant). The functor $ F : \mathfrak K _ {1} ^ {*} \times \mathfrak K _ {2} \rightarrow \mathfrak C $ | ||
+ | associates to each pair of objects $ ( A , B ) $, | ||
+ | $ A \in \mathop{\rm Ob} \mathfrak K _ {1} $, | ||
+ | $ B \in \mathop{\rm Ob} \mathfrak K _ {2} $, | ||
+ | an object $ F ( A , B ) \in \mathop{\rm Ob} \mathfrak C $ | ||
+ | and to each pair of morphisms $ ( \alpha , \beta ) $, | ||
+ | where | ||
− | + | $$ | |
+ | \alpha : A \rightarrow A _ {1} \in \ | ||
+ | \mathop{\rm Mor} \mathfrak K _ {1} ,\ \ | ||
+ | \beta : B \rightarrow B _ {1} \in \ | ||
+ | \mathop{\rm Mor} \mathfrak K _ {2} , | ||
+ | $$ | ||
a morphism | a morphism | ||
− | + | $$ | |
+ | F ( \alpha , \beta ) : F ( A _ {1} , B ) \rightarrow F | ||
+ | ( A , B _ {1} ) \in \mathop{\rm Mor} \mathfrak C , | ||
+ | $$ | ||
in such a way that the following conditions are satisfied: | in such a way that the following conditions are satisfied: | ||
− | 1) | + | 1) $ F ( 1 _ {A} , 1 _ {B} ) = 1 _ {F ( A , B ) } $ |
+ | for any pair of objects $ A , B $; | ||
− | 2) if | + | 2) if $ \alpha : A \rightarrow A _ {1} $, |
+ | $ \alpha _ {1} : A _ {1} \rightarrow A _ {2} $, | ||
+ | $ \alpha , \alpha _ {1} \in \mathop{\rm Mor} \mathfrak K _ {1} $, | ||
+ | $ \beta : B \rightarrow B _ {1} $, | ||
+ | $ \beta _ {1} : B _ {1} \rightarrow B _ {2} $, | ||
+ | $ \beta , \beta _ {1} \in \mathop{\rm Mor} \mathfrak K _ {2} $, | ||
+ | then | ||
− | + | $$ | |
+ | F ( \alpha _ {1} \alpha , \beta _ {1} \beta ) = \ | ||
+ | F ( \alpha , \beta _ {1} ) F ( \alpha _ {1} , \beta ) . | ||
+ | $$ | ||
Examples of multi-functors. | Examples of multi-functors. | ||
− | A) Let | + | A) Let $ \mathfrak K $ |
− | + | be a category with finite products. Then the product of $ n $ | |
− | + | objects can be considered as an $ n $- | |
− | + | place functor that is covariant in all its arguments, defined on $ \mathfrak K ^ {n} = \mathfrak K \times \dots \times \mathfrak K $( | |
− | + | $ n $ | |
+ | times) and taking values in $ \mathfrak K $. | ||
+ | Similar functors can be constructed for coproducts, etc. | ||
− | + | B) Let $ \mathfrak K $ | |
+ | be an arbitrary category. Associate with each pair of objects $ A , B $ | ||
+ | from $ \mathfrak K $ | ||
+ | the set of morphisms $ H _ {\mathfrak K } ( A , B ) $ | ||
+ | and with each pair of morphism $ \alpha : A \rightarrow A _ {1} $, | ||
+ | $ \beta : B \rightarrow B _ {1} $ | ||
+ | the mapping $ H _ {\mathfrak K } ( \alpha , \beta ) : H _ {\mathfrak K} ( A _ {1} , B ) \rightarrow H _ {\mathfrak K} ( A , B _ {1} ) $ | ||
+ | given as follows: if $ \phi : A _ {1} \rightarrow B $ | ||
+ | then $ H _ {\mathfrak K} ( \alpha , \beta ) ( \phi ) = \beta \phi \alpha $. | ||
+ | This construction gives a two-place functor from $ \mathfrak K ^ {*} \times \mathfrak K $ | ||
+ | into the category of sets that is contravariant in its first argument and covariant in its second. | ||
− | + | If $ \mathfrak K $ | |
+ | is an [[Additive category|additive category]], then this functor can be regarded as taking values in the category of Abelian groups. | ||
+ | C) Let $ \mathfrak K $ | ||
+ | be a category with finite products. Consider the product as a two-place functor $ \times : \mathfrak K \times \mathfrak K \rightarrow \mathfrak K $. | ||
+ | Then by combining Examples A) and B) it is possible to construct three-place functors $ H _ {\mathfrak K} ( A , B \times C ) $ | ||
+ | and $ H _ {\mathfrak K} ( A \times B , C ) $. | ||
+ | The first functor is naturally equivalent to the functor $ H _ {\mathfrak K} ( A , B ) \times H _ {\mathfrak K} ( A , C ) $. | ||
+ | If $ \mathfrak C $ | ||
+ | is the category of sets (cf. [[Sets, category of|Sets, category of]]), the second functor is naturally equivalent to the functor $ H _ {\mathfrak C} ( A , H _ {\mathfrak C} ( B , C ) ) $. | ||
+ | D) Let $ \theta $ | ||
+ | be a [[Small category|small category]] and let $ F ( \theta , \mathfrak C ) $ | ||
+ | be the category of diagrams over the category of sets $ \mathfrak C $ | ||
+ | with scheme $ \theta $, | ||
+ | that is, the category of one-place covariant functors and their natural transformations. A two-place functor $ E : \theta \times F ( \theta , \mathfrak C ) \rightarrow \mathfrak C $ | ||
+ | which is covariant in both arguments is constructed as follows: If $ A \in \mathop{\rm Ob} \theta $ | ||
+ | and $ F \in \mathop{\rm Ob} F ( \theta , \mathfrak C ) $, | ||
+ | then $ E ( A , F ) = F ( A) $; | ||
+ | if $ \alpha : A \rightarrow B \in \mathop{\rm Mor} \theta $ | ||
+ | and $ \sigma : F \rightarrow G $ | ||
+ | is a natural transformation, then $ E ( \alpha , \sigma ) = \sigma _ {B} F ( \alpha ) = G ( \alpha ) \sigma _ {A} $. | ||
+ | The functor $ E $ | ||
+ | is called the "evaluation functorevaluation functor" . This functor is naturally equivalent to the functor $ \mathop{\rm Nat} ( H _ {A} , F ) : \theta \times F ( \theta , \mathfrak C ) \rightarrow \mathfrak C $, | ||
+ | which associates with an object $ A \in \theta $ | ||
+ | and a functor $ F : \theta \rightarrow \mathfrak C $ | ||
+ | the set of natural transformations of the [[Representable functor|representable functor]] $ H _ {A} $ | ||
+ | into $ F $( | ||
+ | Yoneda's lemma). | ||
====Comments==== | ====Comments==== |
Revision as of 08:01, 6 June 2020
multi-place functor
A function of several arguments, defined on categories, taking values in a category and giving a one-place functor in each argument. More precisely, let $ n $ categories $ \mathfrak K _ {1} \dots \mathfrak K _ {n} $ be given. Construct the Cartesian product category $ \mathfrak K = \overline{\mathfrak K}\; _ {1} \times \dots \times \overline{\mathfrak K}\; _ {n} $, where each category $ \overline{\mathfrak K}\; _ {i} $ is either $ \mathfrak K _ {i} $ or the opposite category $ \mathfrak K _ {i} ^ {*} $. A one-place covariant functor $ F $ from $ \mathfrak K $ with values in a category $ \mathfrak C $ is called an $ n $- place functor on $ \mathfrak K _ {1} \dots \mathfrak K _ {n} $ with values in $ \mathfrak C $. The functor $ F $ is covariant in those arguments which correspond to the factors $ \mathfrak K _ {i} $ in $ \mathfrak K $, and contravariant in the remaining arguments.
The conditions which must be satisfied by a mapping $ F : \mathfrak K \rightarrow \mathfrak C $ are given below (in the case $ n = 2 $, with the first argument contravariant and the second covariant). The functor $ F : \mathfrak K _ {1} ^ {*} \times \mathfrak K _ {2} \rightarrow \mathfrak C $ associates to each pair of objects $ ( A , B ) $, $ A \in \mathop{\rm Ob} \mathfrak K _ {1} $, $ B \in \mathop{\rm Ob} \mathfrak K _ {2} $, an object $ F ( A , B ) \in \mathop{\rm Ob} \mathfrak C $ and to each pair of morphisms $ ( \alpha , \beta ) $, where
$$ \alpha : A \rightarrow A _ {1} \in \ \mathop{\rm Mor} \mathfrak K _ {1} ,\ \ \beta : B \rightarrow B _ {1} \in \ \mathop{\rm Mor} \mathfrak K _ {2} , $$
a morphism
$$ F ( \alpha , \beta ) : F ( A _ {1} , B ) \rightarrow F ( A , B _ {1} ) \in \mathop{\rm Mor} \mathfrak C , $$
in such a way that the following conditions are satisfied:
1) $ F ( 1 _ {A} , 1 _ {B} ) = 1 _ {F ( A , B ) } $ for any pair of objects $ A , B $;
2) if $ \alpha : A \rightarrow A _ {1} $, $ \alpha _ {1} : A _ {1} \rightarrow A _ {2} $, $ \alpha , \alpha _ {1} \in \mathop{\rm Mor} \mathfrak K _ {1} $, $ \beta : B \rightarrow B _ {1} $, $ \beta _ {1} : B _ {1} \rightarrow B _ {2} $, $ \beta , \beta _ {1} \in \mathop{\rm Mor} \mathfrak K _ {2} $, then
$$ F ( \alpha _ {1} \alpha , \beta _ {1} \beta ) = \ F ( \alpha , \beta _ {1} ) F ( \alpha _ {1} , \beta ) . $$
Examples of multi-functors.
A) Let $ \mathfrak K $ be a category with finite products. Then the product of $ n $ objects can be considered as an $ n $- place functor that is covariant in all its arguments, defined on $ \mathfrak K ^ {n} = \mathfrak K \times \dots \times \mathfrak K $( $ n $ times) and taking values in $ \mathfrak K $. Similar functors can be constructed for coproducts, etc.
B) Let $ \mathfrak K $ be an arbitrary category. Associate with each pair of objects $ A , B $ from $ \mathfrak K $ the set of morphisms $ H _ {\mathfrak K } ( A , B ) $ and with each pair of morphism $ \alpha : A \rightarrow A _ {1} $, $ \beta : B \rightarrow B _ {1} $ the mapping $ H _ {\mathfrak K } ( \alpha , \beta ) : H _ {\mathfrak K} ( A _ {1} , B ) \rightarrow H _ {\mathfrak K} ( A , B _ {1} ) $ given as follows: if $ \phi : A _ {1} \rightarrow B $ then $ H _ {\mathfrak K} ( \alpha , \beta ) ( \phi ) = \beta \phi \alpha $. This construction gives a two-place functor from $ \mathfrak K ^ {*} \times \mathfrak K $ into the category of sets that is contravariant in its first argument and covariant in its second.
If $ \mathfrak K $ is an additive category, then this functor can be regarded as taking values in the category of Abelian groups.
C) Let $ \mathfrak K $ be a category with finite products. Consider the product as a two-place functor $ \times : \mathfrak K \times \mathfrak K \rightarrow \mathfrak K $. Then by combining Examples A) and B) it is possible to construct three-place functors $ H _ {\mathfrak K} ( A , B \times C ) $ and $ H _ {\mathfrak K} ( A \times B , C ) $. The first functor is naturally equivalent to the functor $ H _ {\mathfrak K} ( A , B ) \times H _ {\mathfrak K} ( A , C ) $. If $ \mathfrak C $ is the category of sets (cf. Sets, category of), the second functor is naturally equivalent to the functor $ H _ {\mathfrak C} ( A , H _ {\mathfrak C} ( B , C ) ) $.
D) Let $ \theta $ be a small category and let $ F ( \theta , \mathfrak C ) $ be the category of diagrams over the category of sets $ \mathfrak C $ with scheme $ \theta $, that is, the category of one-place covariant functors and their natural transformations. A two-place functor $ E : \theta \times F ( \theta , \mathfrak C ) \rightarrow \mathfrak C $ which is covariant in both arguments is constructed as follows: If $ A \in \mathop{\rm Ob} \theta $ and $ F \in \mathop{\rm Ob} F ( \theta , \mathfrak C ) $, then $ E ( A , F ) = F ( A) $; if $ \alpha : A \rightarrow B \in \mathop{\rm Mor} \theta $ and $ \sigma : F \rightarrow G $ is a natural transformation, then $ E ( \alpha , \sigma ) = \sigma _ {B} F ( \alpha ) = G ( \alpha ) \sigma _ {A} $. The functor $ E $ is called the "evaluation functorevaluation functor" . This functor is naturally equivalent to the functor $ \mathop{\rm Nat} ( H _ {A} , F ) : \theta \times F ( \theta , \mathfrak C ) \rightarrow \mathfrak C $, which associates with an object $ A \in \theta $ and a functor $ F : \theta \rightarrow \mathfrak C $ the set of natural transformations of the representable functor $ H _ {A} $ into $ F $( Yoneda's lemma).
Comments
A two-place functor is often called a bifunctor.
References
[a1] | B. Mitchell, "Theory of categories" , Acad. Press (1965) |
[a2] | S. MacLane, "Categories for the working mathematician" , Springer (1971) pp. Chapt. IV, Sect. 6; Chapt. VII, Sect. 7 |
Multi-functor. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Multi-functor&oldid=18045