Namespaces
Variants
Actions

Difference between revisions of "Monotone function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
A function of one variable, defined on a subset of the real numbers, whose increment <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m0648301.png" />, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m0648302.png" />, does not change sign, that is, is either always negative or always positive. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m0648303.png" /> is strictly greater (less) than zero when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m0648304.png" />, then the function is called strictly monotone (see [[Increasing function|Increasing function]]; [[Decreasing function|Decreasing function]]). The various types of monotone functions are represented in the following table.''''''<table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m0648305.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Increasing (non-decreasing)</td> <td colname="3" style="background-color:white;" colspan="1">
+
<!--
 +
m0648301.png
 +
$#A+1 = 36 n = 0
 +
$#C+1 = 36 : ~/encyclopedia/old_files/data/M064/M.0604830 Monotone function
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A function of one variable, defined on a subset of the real numbers, whose increment $  \Delta f ( x) = f ( x  ^  \prime  ) - f ( x) $,  
 +
for $  \Delta x = x  ^  \prime  - x > 0 $,  
 +
does not change sign, that is, is either always negative or always positive. If
 +
is strictly greater (less) than zero when $  \Delta x > 0 $,  
 +
then the function is called strictly monotone (see [[Increasing function|Increasing function]]; [[Decreasing function|Decreasing function]]). The various types of monotone functions are represented in the following table.
 +
 
 +
<table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1"> $  \Delta f ( x) \geq  0 $
 +
</td> <td colname="2" style="background-color:white;" colspan="1">Increasing (non-decreasing)</td> <td colname="3" style="background-color:white;" colspan="1">
  
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" />
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" />
  
</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m0648306.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Decreasing (non-increasing)</td> <td colname="3" style="background-color:white;" colspan="1">
+
</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $  \Delta f ( x) \leq  0 $
 +
</td> <td colname="2" style="background-color:white;" colspan="1">Decreasing (non-increasing)</td> <td colname="3" style="background-color:white;" colspan="1">
  
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" />
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" />
  
</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m0648307.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Strictly increasing</td> <td colname="3" style="background-color:white;" colspan="1">
+
</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $  \Delta f ( x) > 0 $
 +
</td> <td colname="2" style="background-color:white;" colspan="1">Strictly increasing</td> <td colname="3" style="background-color:white;" colspan="1">
  
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" />
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" />
  
</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m0648308.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Strictly decreasing</td> <td colname="3" style="background-color:white;" colspan="1">
+
</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $  \Delta f ( x) < 0 $
 +
</td> <td colname="2" style="background-color:white;" colspan="1">Strictly decreasing</td> <td colname="3" style="background-color:white;" colspan="1">
  
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" />
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" />
Line 19: Line 41:
 
</td></tr> </table>
 
</td></tr> </table>
  
If at each point of an interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m0648309.png" /> has a derivative that does not change sign (respectively, is of constant sign), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483010.png" /> is monotone (strictly monotone) on this interval.
+
If at each point of an interval   f
 +
has a derivative that does not change sign (respectively, is of constant sign), then   f
 +
is monotone (strictly monotone) on this interval.
 +
 
 +
The idea of a monotone function can be generalized to functions of various classes. For example, a function    f ( x _ {1} \dots x _ {n} )
 +
defined on    \mathbf R  ^ {n}
 +
is called monotone if the condition    x _ {1} \leq  x _ {1}  ^  \prime  \dots x _ {n} \leq  x _ {n}  ^  \prime 
 +
implies that everywhere either    f ( x _ {1} \dots x _ {n} ) \leq  f ( x _ {1}  ^  \prime  \dots x _ {n}  ^  \prime  )
 +
or    f ( x _ {1} \dots x _ {n} ) \geq  f ( x _ {1}  ^  \prime  \dots x _ {n}  ^  \prime  )
 +
everywhere. A monotone function in the [[Algebra of logic|algebra of logic]] is defined similarly.
  
The idea of a monotone function can be generalized to functions of various classes. For example, a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483011.png" /> defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483012.png" /> is called monotone if the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483013.png" /> implies that everywhere either <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483014.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483015.png" /> everywhere. A monotone function in the [[Algebra of logic|algebra of logic]] is defined similarly.
+
A monotone function of many variables, increasing or decreasing at some point, is defined as follows. Let    f
 +
be defined on the    n -
 +
dimensional closed cube    Q  ^ {n} ,
 +
let  $  x _ {0} \in Q  ^ {n} $
 +
and let  $  E _ {t} = \{ {x } : {f ( x) = t,  x \in Q  ^ {n} } \} $
 +
be a [[Level set|level set]] of    f .  
 +
The function    f
 +
is called increasing (respectively, decreasing) at    x _ {0}
 +
if for any    t
 +
and any    x  ^  \prime  \in Q  ^ {n} \setminus  E _ {t}
 +
not separated in    Q  ^ {n}
 +
by    E _ {t}
 +
from    x _ {0} ,
 +
the relation  $  f ( x  ^  \prime  ) < t $(
 +
respectively,  $  f ( x  ^  \prime  ) > t $)
 +
holds, and for any    x  ^ {\prime\prime} \in Q  ^ {n} \setminus  E _ {t}
 +
that is separated in    Q  ^ {n}
 +
by    E _ {t}
 +
from  $  x _ {0} $,
 +
the relation  $  f ( x  ^ {\prime\prime} ) > t $(
 +
respectively,  $  f ( x  ^ {\prime\prime} ) < t $)
 +
holds. A function that is increasing or decreasing at some point is called monotone at that point.
  
A monotone function of many variables, increasing or decreasing at some point, is defined as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483016.png" /> be defined on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483017.png" />-dimensional closed cube <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483018.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483019.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483020.png" /> be a [[Level set|level set]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483021.png" />. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483022.png" /> is called increasing (respectively, decreasing) at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483023.png" /> if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483024.png" /> and any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483025.png" /> not separated in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483026.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483027.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483028.png" />, the relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483029.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483030.png" />) holds, and for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483031.png" /> that is separated in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483032.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483033.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483034.png" />, the relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483035.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483036.png" />) holds. A function that is increasing or decreasing at some point is called monotone at that point.
+
====Comments====
 +
For the concept in [[non-linear functional analysis]], see [[Monotone operator]]. For the concept in general [[partially ordered set]]s, see [[Monotone mapping]].

Latest revision as of 08:01, 6 June 2020


A function of one variable, defined on a subset of the real numbers, whose increment \Delta f ( x) = f ( x ^ \prime ) - f ( x) , for \Delta x = x ^ \prime - x > 0 , does not change sign, that is, is either always negative or always positive. If \Delta f ( x) is strictly greater (less) than zero when \Delta x > 0 , then the function is called strictly monotone (see Increasing function; Decreasing function). The various types of monotone functions are represented in the following table.

<tbody> </tbody>
\Delta f ( x) \geq 0 Increasing (non-decreasing)

\Delta f ( x) \leq 0 Decreasing (non-increasing)

\Delta f ( x) > 0 Strictly increasing

\Delta f ( x) < 0 Strictly decreasing

If at each point of an interval f has a derivative that does not change sign (respectively, is of constant sign), then f is monotone (strictly monotone) on this interval.

The idea of a monotone function can be generalized to functions of various classes. For example, a function f ( x _ {1} \dots x _ {n} ) defined on \mathbf R ^ {n} is called monotone if the condition x _ {1} \leq x _ {1} ^ \prime \dots x _ {n} \leq x _ {n} ^ \prime implies that everywhere either f ( x _ {1} \dots x _ {n} ) \leq f ( x _ {1} ^ \prime \dots x _ {n} ^ \prime ) or f ( x _ {1} \dots x _ {n} ) \geq f ( x _ {1} ^ \prime \dots x _ {n} ^ \prime ) everywhere. A monotone function in the algebra of logic is defined similarly.

A monotone function of many variables, increasing or decreasing at some point, is defined as follows. Let f be defined on the n - dimensional closed cube Q ^ {n} , let x _ {0} \in Q ^ {n} and let E _ {t} = \{ {x } : {f ( x) = t, x \in Q ^ {n} } \} be a level set of f . The function f is called increasing (respectively, decreasing) at x _ {0} if for any t and any x ^ \prime \in Q ^ {n} \setminus E _ {t} not separated in Q ^ {n} by E _ {t} from x _ {0} , the relation f ( x ^ \prime ) < t ( respectively, f ( x ^ \prime ) > t ) holds, and for any x ^ {\prime\prime} \in Q ^ {n} \setminus E _ {t} that is separated in Q ^ {n} by E _ {t} from x _ {0} , the relation f ( x ^ {\prime\prime} ) > t ( respectively, f ( x ^ {\prime\prime} ) < t ) holds. A function that is increasing or decreasing at some point is called monotone at that point.

Comments

For the concept in non-linear functional analysis, see Monotone operator. For the concept in general partially ordered sets, see Monotone mapping.

How to Cite This Entry:
Monotone function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Monotone_function&oldid=18679
This article was adapted from an original article by L.D. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article